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Abstract 
In order to establish the cold wire drawing production, the CuNi2Si alloy passes 

schedule were examined by the Duckfield and Ermanok methods in two wire drawing 
versions: with the diamond die with an angle of 9o and the tungsten carbide die with an 
angle of 7o. Experiments confirmed that the CuNi2Si alloy can be successfully 
transformed to the wire with the diameter of 0.2 mm with properties enabling its 
practical application. The experimental results and the control group showed that the 
theoretical methods of the upper and lower bound solution can determine the values of 
the relevant cold wire drawing factors for the CuNi2Si alloy to which Hollomon curve 
applies. 
Keywords: Hollomon’s equation, CuNi2Si, lower bound solution, upper bound solution 

Introduction 
Most polycrystalline aggregates show approximately parabolic relationship 

between the true stress and true strain. For metals and alloys to which the Hollomon 
equation applies, the true stress at which plastic instability appears is expressed through 
equation [1]: 

n
nCεσ =  (1) 

where: σ [Nm-2] – stress 
C [Nm-2]– the strengthening factor 
n – index of the strain hardening 
εn- real homogeneous strain 
The drawing stress is expressed as: 
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where η is the goodness degree for the efficient action during drawing [2]. 
The bound workability is: 

1)η(nmaxε +=  (3) 

and the reduction of the section is calculated from: 
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where: Ab and Aa [m2] – cross section before and after drawing 

The strain rate ε
•

 for the round profile during wire drawing is given as [3]: 
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where: ε
•

 [s-1] - strain rate  
Db and Da [m] – diameters of the drawing material before and after drawing, 

respectively 

vi [ms-1] – the velocity of the drawing  
α [rad] – the die semi-angle 
td – time derivative 
ln λ – is ε, where ε is logarithmic strain 
At the lower bound solution (LBS) the optimum die semi-angle for the minimal 

drawing force is shown as [4, 5]: 

fmKaA 0.77

ΔAμmK
opα =

 (7) 

where ΔA=Ab-Aa 
 
When the curve by S. Gеleji is applied to (1) and when Km=K=σe, then: 
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where: Kai – reshaped material hardness for the whole strain in passes: 
Kfm – average strain hardness 
εb – strain in passes i 
εa – strain in passes (i-1) 
At the upper bound solution (UBS) the optimum die semi-angle before and after 

drawing of the material may be calculated from [6, 7]: 
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where: Rb and Ra [m] – radius of the drawing material before and after 
drawing, respectively 

μ – the friction coefficient from the condition of plastic flow by von Mises’ stress 
is given as: 

3

m
μ =

 
where m is the coefficient of the shear. 
The stress during wire drawing is given with the following expression [8]: 
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 (10) 

The stress against the tension, under the experimental conditions, is σxb=0. 
The specific strain work, by Duckfield method, for all passes was calculated from 

the equation (11) [20]: 
)076.0(12.1 nTSTw += ε

 (11) 

for the n-th passes was: 
)076.0(12.1 nTS

n
w +−= ε

 (12) 

S – average stress strength for the whole deformation (for all passes) 

Tε – logarithmic strain by the pass 
The effect of wire drawing passes schedule on the multiple-drawing machines 

was the subject of interest in many investigations [8-19]. These investigations were 
based on the experimental data, such as, passes schedule with: the constant reduction, a 



64 Metall. Mater. Eng. Vol 20 (1) 2014 p. 61-71 

decreasing single reduction, a decreasing logarithmic strain, as well as Duckfield and 
Ermanok methods [20, 3]. Using the theoretical methods for analyzing the passes 
schedule calculation it was possible to predict the passes schedule accuracy from the 
LBS and UBS results for the metals to which the Hollomon curve applies. 

The objective of this paper was to study metal drawing goodness degree for 
CuNi2Si alloy to which the Hollomon equation applies. For the analysis of strain 
characteristics of this alloy, the stress-strain curves were used, where the true stress σe is 
shown in the relationship to the true or the logarithmic strain ε. 

The experimental investigations were done on the basis of the experimental plan 
factors in several levels: 

- the investigation on the die geometry, in particular the cone-convergent die 
part 

- the strain hardening curve determination necessary for the comparative method 
evaluation for the passes schedule calculation 

- the friction coefficient determination between the die material and the drawing 
material  

- the effective stress curve values determination in the form of nK Cε=  for the 
material used the plan on the introduction of mathematical methods for the 
investigation of the stress-strain state by the LBS and UBS in order to 
comparatively evaluate passes schedule methods 

Experimental 
The semi manufactured CuNi2Si alloy in the form of wire with the chemical 

composition (weight %): Ni (1.6 – 2.5), Si (0.5 – 0.8), impurities (max. 0.5) and Cu 
being remainder, was the object of this investigation. Preparation of the starting wire 
was done on the industrial equipment at the laboratory of the Cable factory Novkabel, 
Novi Sad. The starting diameter of wire was Do = 1.288 mm. The alloy was 
homogenized by annealing in the nitrogen atmosphere at 900oC for 30 min and water 
quenched. The final wire drawing from Do = 1.288 mm to Dn = 0.200 mm was 
performed at the Faculty of Technology and Metallurgy, Belgrade. The drawing was 
executed on the laboratory drawing bench for the measurement of the drawing forces 
and on the rotating wire drawing machine. The hypoid oil was used as a lubricant. The 
diamond and the tungsten carbide dies were used, according to DIN 1546 and DIN 1547 
[21, 22]. Length of the cylindrical die part was L=0.2 Di. A micrometer with an 
accuracy of 1/1000 mm was used for measurements of wire diameter. The tensile tests 
were performed at the laboratory of the Copper Mill Sevojno on the testing machine 
Zwick 1484. 

Results 
For the passes schedule calculation, by Duckfield and Ermanok methods, the 

stress-logarithmic strain curves were constructed for the CuNi2Si alloy (Fig. 1. and 2.). 
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Fig. 1. The dependence of the true stres σe [MPa] on the strain by the Duckfield  method 
for the CuNi2Si alloy 
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Fig. 2. The dependence of the true stress σe [MPa] on the strain by the Ermanok method 

for the CuNi2Si alloy 

Strain hardening curve was determined experimentally (Fig. 3.) and was 
calculated using the regression analysis (13): 

0.24528.9K ε=  [MPa] (13) 

The experiment was based on the planned passes schedules: A, B, C and D. 
The variant A comprised 20 passes with the standard diamond die, with an angle of 9°, 
with the decreasing logarithmic strain with the mean value of εsr =0.184 and the whole 
strain was εu =3.725. The variant B, was the same as A, just the tungsten carbide die 
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was used instead of the diamond die, with an angle of 7°. The variant C comprised 13 
passes with the standard diamond die, with an angle of 9°, with the constant logarithmic 
strain εsr =0.286 and the whole strain was εu =3.725. The variant D, was the same as C, 
just tungsten carbide die was used instead of the diamond die, with an angle of 7°. 

It was expected that the passes schedules would provide approximately the same 
deformation work of 3

0 158Q MJ m−= ⋅ , calculated by the equation (12). The strain rate 

was calculated by the equation (6). The drawing rate was 158.4iv mm s−= ⋅ . The tensile 
strength was obtained from the curves in Fig. 1 and 2. Then, the passes schedules were 
assembled under real conditions and the experimental values of the following elements 
were determined: drawing force, drawing stress, effective stress, relative drawing stress 
and the total specific strain work. The friction coefficient determination, for all passes 
schedule variants, was determined by a separate experiment and the results are depicted 
in Table 1. The relative drawing stress was calculated from the equation (14): 

xf

e

σ
υ

σ
=  (14) 

and is depicted in Fig. 4 and 5. All other results obtained are depicted in Table 1. 
 

Table 1. Total and average strain work and friction coefficient for the passes schedule 
A, B, C and D 

Plan Total strain work, 
wu [MPa m-3] 

Average strain work,  
wsr [MPa m-3] 

Friction coefficient, 
μ 

A 4986 262 0.060 
B 8072 403 0.272 
C 4767 368 0.061 
D 5443 418 0.165 

 
Effective stress curves, for all four variants, and the Hollomon curve are depicted 

in Fig. 3. The experimental results analysis indicated that all curves correspond to the 
third stage of strain hardening [23]. The curves differ from each other due to two 
reasons. Due to the strain hardening process whose speed increases with increasing the 
deformation disparities due to the drawing angle increase, partial deformation and 
friction coefficient. The other reason is due to the recovery process which reduces the 
strain hardening rate, since its intensity is proportional to the total brought energy and 
inversely proportional to the strain rate. 
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Fig. 3. The relation ln (Ao/Ai) versus stress σe for the A – D passes schedules and the 

Hollomon curve K 

It should be expected, due to the strain hardening process, that there is the 
following order: σCe> σDe> σAe> σBe, while the brought specific works values should be 
in order: wB> wD> wA> wC. The partial strain work wi was two times higher for the 
passes schedule A and B, while for the passes schedule C and D was 1.8 times higher. 
The significance of this analysis is that the strain hardening curve approximates well for 
all the curves of the cold drawing process. The experimentally obtained data were used 
in the relation (10) to calculate the friction coefficient for each passes schedule. Using 
the Hollomon curve it was possible to prove a connection between the logarithmic strain 
and the index of the strain hardening. From the equation (2), the strain hardening speed 

is: 1d nCn nd

σ
ε

ε
−= . Taking into account, also, the condition for the occurrence of plastic 

instability, which is defined as: 
d

d

σ
σ

ε
=  and at the moment at which plastic instability 

appears the following equation can be written: 
1n nnC C nn n nε ε ε− = ⇒ =   (15) 

According to the equation (15) the instability occurs when the real homogeneous 
elongation becomes equal to the strain hardening index. Practically, the theoretical 
approach for the analysis of the thin wire drawing technological process can be carried 
out using the previous experiment as a control group. For the comparative evaluation of 
the single method calculation it was necessery to find out the etalon "series"- the passes 
schedule. 

As there was a search for a standard die angle which was expected to become the 
optimal one, for this analysis, the equations (9) and (7) were used. When the quadratic 
equation (9), for the optimal angle, is written in the form: 
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2 22 2 3 0opμε με α+ − =  (16) 

the optimum interdependences of its factors can be calculated. In the equation 
(16) ( ),fα μ ε= , where ε is the independent variable and the μ is a dependent 
variable. When tg α=μ, only then and only then the equation (16) has optimal solutions. 
For the standard angles the equation (16) can be used, with an error of less than 1%. 

Then αα =tg  and the calculation gives the following values for the independent 
variable ε: 

for 7o ε=0.192 
for 9o ε=0.240 
When the equation (4) is written in a form: 

1
2expi iD D
ε

−

−
= ⋅  (17) 

Then, according to the equation (17), the etalon series values were calculated. 
Thus, for the angle of 7o obtained was the final diameter Dn = 0.200 mm, the number of 
passes was z = 19. For the angle 9o, z = 17 and the inlet diameter was D0 = 1.288 mm. 
Practical work has confirmed that this passes schedule calculation is valid for the 
tungsten carbide and diamond dies. But, for the relevant values calculation of the 
technological drawing process the procedure is different for tungsten carbide die in 
comparison with the diamond die. So, for the tungsten carbide dies the elements of the 
system can be obtained from the equation (9) and the Hollomon curve. For the diamond 
die the elements of the system can be obtained from the equation (7) and the Hollomon 
curve.  
This applies to passes schedules under real conditions and for the etalon series passes 
schedule. In this paper, the investigation was focused on passes schedule used to 
organize the CuNi2Si thin wire production. For the ideal series the relevant parameters 
were calculated with the constant logarithmic strain, which were: 
ν - the relative drawing stress from the equation (13) 
η – goodness degree from the equation (2) 
σxf - drawing stress from the equation (10) 
σe - effective stress from the Hollomon equation 

The values for the ν and η are constant for ideal passes schedules. For tungsten 
carbide die with: an angle of 7o and the logarithmic strain ε = 0.192, the goodness 
degree was η = 0.295 and the relative drawing stress was ν = 0.678. For the diamond die 
with: an angle of 9o and the logarithmic strain ε = 0.240, the goodness degree was η = 
0.380, and the relative drawing stress was ν = 0.512. 

The values for the passes schedule A and B are depicted in the Fig. 4 and for the 
C and D in the Fig. 5, calculated by the same procedure. 
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Fig. 4. The arrangement of the relative drawing stress σxf/ σe for the processes A and B, 
the experimental values. The arrangement of the relative drawing stress σxf/ σe for the 
processes A and B, calculated values, υA and υB The goodness degree η for the A and 

B, calculated values, ηA and ηB 
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Fig. 5 The arrangement of the relative drawing stress σxf/ σe for the processes C and D, 
the experimental values. The arrangement of the relative drawing stress σxf/ σe for the 

processes C and D, calculated values, υC and υD. The goodness degree η for the C and 
D, calculated values, ηC and ηD 

Discussion 
The theory is valid only when confirmed in practice. In this sense, it was 

necessary to check the correctness of the equation (9). This can be done through 
determining the friction coefficient values from the experimental data according to the 
equation (10). The control group used was the passes schedule D. The friction 
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coefficient mean value calculated for the whole passes schedule was, with a slight 
difference equal to tg αST. From the experimental results calculated was μsr = 0.12383. 
While from the experimental results and Hollomon equation obtained was μsr = 
0.121428. The same procedure was used in case of the equation (7). Compared were the 
friction coefficient values calculated for the passes schedule with the constant 
logarithmic strain C. The results obtained for the friction coefficient from the equation 
(7) and (10), for the passes schedule C, differ slightly. How the series A with the 
logarithmic decreasing strain in one of the passes has the value n = εop, which from the 
equation (10) gives a friction coefficient value of μ = 0.0633, while the friction 
coefficient, calculated by the equation (7), was μ = 0.0648 showed that the difference is 
minor. This, also, verified the correctness of the method used. From the presented arises 
that the certain method application is determined by the die material: for the tungsten 
carbide die the equation (9) is used, and for the diamond dies the equation (7) is used. 
The explanation, why this is so, can be sought from the process deriving the most 
favorable angles. One angle arises from the minimization of the drawing angle (9), the 
other angle arises from the minimization of the drawing force (7) [5, 6]. 

For the analysis of the condition in the convergent cone die section necessary 
was to observe two basic values: friction coefficient and logarithmic strain with the 
assumption that the die angle is standard. When the standard die angle is the optimal, 
that can be determined from the logarithmic strain and the optimal die angle can be 
higher or smaller from the perfect one. In case when ε is higher than the perfect value, 
then the drawing stress values σxf increase, the relative drawing stress ν increases, while 
the goodness degree value η decreases. Valid is, also, the vice versa case. In other 
words, when the stress is higher than the optimal in the die conical part the contact 
surface and the material volume increases. Therefore, the drawing force increases, more 
precisely the drawing stress σxf. After gathering the previous results, the relevant values 
of the technological drawing metal process can be analyzed. Thus, the curve A slightly 
deviates from the curve νA. Similarly, the curve C slightly deviates from the curve νC. 
The deviation of the curves B from the curve νB, as well as the curve D from the curve 
νD is significant. The goodness degree curves η can be analyzed by the same procedure 
from the Figure 5. Significant deviations are the result of higher real logarithmic strain 
values compared to the ideal passes schedules. The previous findings indicate that in the 
practice passes schedules with constant logarithmic strain should be used, and in the 
passes schedule preparation in practice, there should be only small passes deviations 
from ideal ones. 

Conclusion 
Using CuNi2Si alloy for the thin wire drawing it was established that the product 

has good mechanical properties. The theoretical methods: the lower bound solution 
(LBS) and the upper bound solution (UBS) can be used for the calculation and analysis 
of the technological drawing processes, but only for metals to which the Hollomon 
equation applies.  

It can be concluded that the standard die angles were accurately choosen. The 
Duckfield method for the passes schedule calculation is based on the original idea 
which predicts in advance the system quality. The advantage of this method is that it is 
based on the constant logaritmic strain and, in this form, it can be recommended for the 
practical application. 
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