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ABSTRACT 

In this paper, two feed forward neural network models have been presented to predict 
the Silicon Modification Level (SiML) of W319 aluminum alloys using the Thermal Analysis 
(T.A) parameters as inputs. The developed neural networks are a Multilayer Perceptron 
(MLP) network and a Radial Basis Function (RBF) network. The neural network models 
were found to predict the SiML accurately (R=0.99). The accuracy of the Neural Network 
Models has been compared with the existing ∆T method and a linear multiple regression 
model. The comparison of the RBF and MLP networks has shown that the RBF requires 
much lesser training time than MLP. 
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INTRODUCTION 

W319 Aluminum is a casting alloy from the hypoeutectic Al-Si-Cu family. This 
alloy is mainly used in casting engine blocks, cylinder heads, and manifolds. Silicon is 
the most important alloying element in this alloy. It improves the castability and 
machinability of the W319 Al alloy. The unmodified W319 Al alloy contains silicon 
phase in the form of large plates with sharp sides and ends (acicular silicon). 
Modification is a method by which inoculants in the form of master alloys are added to 
aluminum melt to change the structure of the eutectic silicon from acicular flakes to a 
fine fibrous structure. Modification improves ductility and fracture strength of the 
aluminum alloys. Several modifiers are known (eg. Sr, Sb, Na, Ba, and Ca) of which 
strontium (Sr) is the one most commonly used in the industry owing to the following 
reasons: (a) It is easy to handle (b) It has good modification rate (c) It has long 
incubation period and (d) Its fading effect is low  (Djurdjevic et al., 2001, Closset and 
Gruezleski, 1990). 

The on-line prediction of the Silicon Modification Level (SiML) is very important 
for the quality control of W319 Aluminum alloy castings. Conventionally, SiML is 
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estimated by destructive sampling and manual microscopic analysis of the structure. The 
structure is compared with the American Foundry Society (AFS) chart for microstructure 
control in hypoeutectic alloys. In this chart the entire range of the modification level is 
divided into six classes based on the size of the eutectic silicon particles. Fully modified 
structure falls into class 5-6, partially modified into 2-4 and unmodified into class 1. 
Based on the visual comparison, the specimen is assigned a modification level, where 
the structures of the specimen and AFS chart are closest. But this method is expensive, 
time consuming, subjective and hence inaccurate. Also the microscope is not suitable to 
be used in the foundry environment as an online method to predict the SiML. 

 

Level 1 Level 2 

Level 3 Level 4 

Level 5 Level 6 
 

Fig.1. Representative Si structure morphologies corresponding to the AFS chart for 
hypoeutectic aluminum alloys (Djurdjevic et al., 2001). ( 

Djurdjevic et al., 2001, presents another method to assess the SiML using the 
Thermal Analysis (T.A) technique. In this method the ∆T parameter of the cooling curve 
is correlated to the SiML estimated via Image Analysis (IA). ∆T parameter is the 
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difference in the Al-Si eutectic growth temperature between the unmodified and 
modified alloys. ∆T parameter can be obtained from the cooling curve using equation 1 
(Djurdjevic et al., 2001). 

SiAl
MODIFIED,G,ETSiAl

UNMODIFIED,G,ETT −−−=∆  (1) 

where: =−SiAl
UNMODIFIED,G,ET aluminum-silicon eutectic growth unmodified temperature 

is the maximum temperature achieved during the recalescence of the melt from the 
nucleation temperature without any addition of modifiers or with a residual level of 
modifiers (8 ppm Sr).  

=−SiAl
MODIFIED,G,ET aluminum-silicon eutectic growth modified temperature is the 

maximum temperature that is achieved during the recalescence of the solidifying melt. 
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Fig.2. Cooling curves for low (8 ppm) and high (98 ppm) levels of strontium 

(Djurdjevic et al., 2001) 
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From the knowledge of the ∆T parameter the SiML can be calculated using 
equation 2 (Djurdjevic et al., 2001). 
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This method improves the precision and accuracy of the SiML assessment because 
it eliminates the operator bias and subjectivity. This method gives a digital criterion for 
the assessment of SiML based on the AFS concept and can be used as an online method 
for the estimation of SiML. 

In this paper, Neural Network modeling has been attempted to predict the SiML 
using the T.A. parameters as inputs. The on-line prediction of SiML is important for 
controlling casting microstructure and hence mechanical properties. It has been shown 
that TA can be used to predict the SiML (Djurdjevic et al., 2001). But the existing 
method also needs information about the unmodified alloy.  So it would be worthy to 
develop a model to assess the SiML, only by just using TA parameters of the cooling 
curve. Artificial Neural Networks (ANN) has the potential to develop such a model 
owing to the following reasons: 

1. ANN has adaptive learning algorithms and a trained neural network can 
generalize well on the test data. In other words ANN has self-learning and self-
tuning capacity, it enables the output to approach successively to desirable 
output (Pospichal et al. 1997, Chen et al. 2002). 

2. ANN can capture the interactions between the inputs because the hidden units 
are non-linear. The nature of the interactions are implicit in the values of the 
connection weighs (Bhadeshia, 1999). In this problem the interactions between 
the alloying elements are not well defined and the input-output relationship is 
complex and non-linear. 

3. Modeling using ANN has been extensively used in the field of Materials 
Science and Engineering (Li et al., 1999, Song et al, 1995, Malinova et al., 
2001, and Malinov et al., 2001). 

ARTIFICIAL NEURAL NETWORKS (ANN) 

BASIC PRINCIPLES 

ANN consists of simple synchronous processing elements, which are inspired by 
biological nervous system (Calcaterra et al.2000). They solve a problem by means of 
learning rather than by specific programming based on well-defined rules (Lehr et al., 
1994 and Beale et al. 2002). The input and output data are linked using a particular set of 
nonlinear basis functions. The basic unit of the ANN is the neuron. Neurons are 
connected to each other by links known as synapses; associated with each synapse there 
is a weight factor. Usually neural networks are trained so that a particular set of inputs 
produces, as nearly as possible, a specific set of target outputs (Malinov et al., 2001). 

In feed forward ANN the information is processed in one direction - from input to 
output - and the neurons are arranged in layers. The numbers of input and output 
parameters determines the number of neurons in the input layer and the output layer 
respectively. 

The neural network modeling involves the following steps: 
a. Database collection. 
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b. Analysis and preprocessing of the data. 
c. Training of the Neural Network. (This includes choice of the architecture, 

training functions, training algorithms and parameters of the network). 
d. Testing of the trained network. 

Experimental Procedure for Database Collection 

The chemical composition of the commercial W319 aluminum alloy ingots used in 
this study is given in Table 1. 
Table 1.Average chemical composition (wt%) of the W319-aluminum alloy used in the 

experiments 

Si Fe Cu Mn Mg Ni Zn Ti Sb P Na 

7.554 0.394 3.452 0.238 0.236 0.008 0.009 0.122 0.052 0.0015 0.0004 

 

A total of 10 kg of W319 alloy ingots were melted in an electric furnace kept at a 
temperature of 735 ± 5 0C. Degassing was done for 15 minutes using an argon rotary 
degasser. The melt was modified through the addition of master alloy (Al-10 -wt% Sr). 
An incubation time of 15 minutes was allowed after strontium addition. The Strontium 
level was varied between 8 and 96 ppm (1 ppm=0.0001 wt%). Thermal Analysis (TA) 
was conducted using a system that records the temperature history of a 160 ± 10 g test 
sample of molten alloy as it cools down from the ~7300C to 4000C. The TA test samples 
were taken by submerging a cylindrical graphite cup (40 mm diameter, 50 mm deep) 
into the melt. The cup was kept submerged in the melt for 20s after which it was placed 
on the stand. Two K-type thermocouples, sheathed in stainless steel, were introduced 
into the cup to measure the temperature of the melt as it is cooled. The data for TA was 
collected using a high-speed data acquisition system linked to a personal computer.  

Specimens for Image Analysis (IA) were cut from the test samples close to the tips 
of the thermocouples. The cross-sections of the specimens were ground and polished 
using standard metallographic procedures. The final polish was done using OP-U on 
microcloth.  A Leica Q5501W Image Analysis System (IAS) was used to assess the 
Silicon Modification Level (SiML) of the polished test samples.  Forty seven cooling 
curves (data sets) are obtained from the TA experiments with different levels of 
strontium ranging from 8 ppm(unmodified) to 96 ppm (fully modified). 

Input Parameters of the ANN 

The input parameters of the ANN were selected from the cooling curve parameters. 
The cooling curves were processed and the TA parameters (time, temperature, and 
fraction solid) were computed. The input parameters for the ANN were selected from the 
computed TA parameters by Stepwise Regression Analysis. The symbols of the selected 
TA parameters, their description, metallurgical meaning, and p-values are shown in the 
Table 2. 

The p-value for a parameter tells whether the effect of that parameter is significant 
on the response (SiML). If p-value is less than or equal to the α-level (0.05) selected, 
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then the effect of the parameter is significant. If p-value is larger than the α-level, the 
effect is not significant (Devore, J.L., 1999). The selection of the input parameters is a 
very important aspect of ANN modeling. Usually the choice is based on the physical 
background of the process. All relevant input parameters must be included as inputs of 
the ANN. However those parameters that are linearly dependent should not be included 
as inputs. 

Figure 3 shows the selected input parameters of the ANN in the cooling and 
fraction solid curves. 

 
Table 2. Description of the Input parameters of the ANN 

Symbol of the 
TA Parameter 

Description Metallurgical Meaning p-value 

TDEN
COH 

Temperature at  
the Dendrite 

Coherency Point 
(DCP) 

At this point the dendrite tips of neighboring 
grains come in contact becoming fixed at 

their locations forming a skeleton throughout 
the sample. This point marks the transition 

from mass feeding to interdendritic feeding. 

0 

fsDEN
COH 

Fraction Solid at  
the Dendrite 

Coherency Point 
(DCP) 

At this point the dendrite tips of neighboring 
grains come in contact becoming fixed at 

their locations forming a skeleton throughout 
the sample. This point marks the transition 

from mass feeding to interdendritic feeding. 

0.012 

TAl-Si
E,NUC 

Temperature at the 
Al-Si Eutectic 

Nucleation 

As dendrites nucleate in the samples, the 
composition of the remaining liquid reaches 

the eutectic composition and the Al-Si 
eutectic begins to nucleate and grow. 

0 

TAl-Si
E,G 

Temperature at the 
Al-Si Eutectic 

Growth 

Point at which considerable eutectic growth 
occurs. These parameters are used to gauge 

the morphology of the Al-Si structure. 
0 

fsAl-Cu
E,NUC 

Fraction solid at 
the Al-Cu Eutectic 

Nucleation 

Start of the formation of the Al-Cu eutectic 
as the remaining liquid becomes enriched 

with Cu and Si. The temperature and 
duration of this phenomenon can be used to 

establish adequate solution treatment 
parameters. 

0.016 

fsAl-Cu
E,MIN 

Fraction solid at 
the Al-Cu Eutectic 

Nucleation 

Point after stable co-precipitation of Al and 
Cu when latent heat generation equals the 
heat loss of the sample and appears as a 

minimum in the Al-Si region of the cooling 
curve. 

0 
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Fig.3. The input parameters of the ANN displayed in the Cooling and Fraction solid curves 

 
Analysis and preprocessing of the data 

The relationship between SiML and the input parameters has been established by 
performing a multiple linear regression. The regression equation and the R2 value are 
given in equation 3. 

SiML = 520 - 29.4fsDEN
COH - 0.645TDEN

COH + 0.165TAl-Si
E,NUC- 0.238TAl-Si

E,G 

– 49.9fsAl-Cu
E,NUC - 45.3fsAl-Cu

E,MIN (3) 

R2=0.872 

The high R2 value indicates good fit between input parameters and SiML. The 
statistical significances (p-values) of these parameters are given Table 2. 

The experimental data set is divided into training and testing sets. About 15% of the 
experimental data are used for testing the model. The test data set was so chosen that it is 
representing all the Modification Levels of the experimental data set (1 to 5). The 
training program is so written that each time when the program is run it starts with a 
different random distribution of the training data (Malinov et al., 2001). Prior to training, 
the data set is subjected to Principal Component Analysis (PCA). This procedure 
eliminates the highly correlated (redundant) input variables from the data (Beale and 
Demuth, 2001).  

Neural Network Training 

The software used to develop the model is the Neural Network Toolbox of 
MATLAB® 6.1. The process of fitting the network to the experimental data is called 
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training. It consists of adjusting the weight of each connection (synapse) between 
neurons. The weight of a synapse multiplied by the strength of the signal on that synapse 
gives the contribution of that synapse to the activation of the neuron for which it is input. 
The total activation of a neuron is then the sum of the activations of all of its inputs and 
this defines the value of the output signal for that neuron, via a transfer function. 
Transfer functions are generally s-shaped (sigmoid) curves, with the output value 
confined within the limits such as (0,1) or (-1/2,1/2). The most popular transfer functions 
are hard limit, linear, log sigmoid, and hyperbolic tangent sigmoid and radial basis 
function (Malinov et al., 2001). 

By adjusting the values of synaptic weights throughout the network, the outputs of 
the ANN for any given set of inputs can be altered. During the training the weights are 
adjusted until the network correctly simulates the behavior of the system to be modeled. 
The simulation will rarely be exact; training is usually aimed at minimizing the sum of 
squares of the differences between predicted and measured values of the outputs. In this 
research two alternative neural networks were developed to predict the SiML. They are: 
(a) Multilayer Perceptron (MLP) Neural Network and (b) Radial Basis Function (RBF) 
Neural Network. 

Multilayer Perceptron Neural Network 

MLP is a feed forward network composed of an input layer, an output layer, and a 
number of hidden layers. The most popular algorithm for training of the MLP is the 
Backpropagation. In this algorithm a random initial set of weights are assigned to the 
network, then presenting the data inputs, comparing the network output to the desired 
output and adjusting the weights so as to reduce the corresponding error. This procedure 
is repeated until an acceptably low value of the error is achieved (Malinov et al., 2001). 
In this work the MLP is trained using the Levenburg-Marquardt backpropagation (Beale 
et al. 2002) algorithm. This algorithm is based on a standard numerical optimization 
technique. When a network is able to perform as well on test set as on training set inputs, 
the network is said to generalize well. In this work the generalizability of the MLP 
network has been attempted by means of regularization (Foresee and Hagan, 1997).  
Different network architectures have been investigated to determine the network that 
provides lesser time of training, and minimum generalization error. The architecture of 
the selected MLP network is given in Table 3. 
Table3. Architecture of the MLP Neural Network 

Number 
of hidden 

layers 

Number 
of neurons 

in the 
hidden 
layer(s) 

Number 
of neurons 

in the 
output 
layer 

Transfer 
function 

of the 
hidden 
layers 

Transfer 
function 

of the 
output 
layer 

Training algorithm 

2 
6 in each 

layer 
1 

log 
sigmoid 

linear 

Bayesian regularization in 
combination with 

Levenberg-Marquardt 
training 
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Radial Basis Networks 

This network was introduced to solve real multivariable interpolation problems. 
The Radial Basis Function (RBF) network consists of one input layer, one hidden layer 
and one output layer. The neurons in the hidden layer do not use weighted sun of inputs 
and sigmoid transfer functions, which are typical of MLP networks. Instead, the vector 
distance between the input weight vector and input vector determines the outputs of the 
hidden layer radial basis neurons. The output layer consists of linear neurons and 
produces a weighted sum of the outputs of the hidden layer (Beale and Demuth, 2001). 
The neurons in the RBF network have localized receptive fields, where as the sigmoid 
transfer function of the standard Multilayer Perceptron (MLP) networks creates global 
response (Campos-Velho et al., 1999). The RBF network trains faster than multilayer 
networks, but requires many neurons for high-dimensional input spaces (Beale et al. 
2002). 

The transfer function for a radial basis neuron is given by equation 4: 

radbas(n)=
2ne−  (4) 

where n is the net input to the radial basis transfer function which is the vector distance 
between the input weight vector and input vector, multiplied by the bias vector. The 
training of RBF consists of deciding the number of hidden neurons, and the centers and 
spread of the transfer function and then training up the output layer (Campos-Velho et 
al., 1999). These decisions are made empirically by examining the vectors in the training 
data (http://web.odu.edu/engr/speechlab/paper2.pdf). The output layer weights are then 
trained using backpropagation (Campos-Velho et al., 1999). Radial basis networks tend 
to have many times neurons than a comparable MLP feed-forward network with sigmoid 
neurons in the hidden layer. Designing a radial basis network takes much less time than 
training a sigmoid/linear network (Beale and Demuth, 2001). The architecture of the 
developed RBF network is given in Table 4. 
Table 4. Architecture of the RBF network 

Number 
of hidden 

layers 

Number of 
neurons in the 
hidden layer 

Number of 
neurons in the 
output layer 

Transfer 
function of the 
hidden layers 

Transfer 
function of the 

output layer 

Spread 
Constant 

1 38 1 Radial Basis Linear 2.3 

 

It can be seen that the number of neurons in the hidden layer of RBF networks is 
much larger than that of the MLP (6). 

Testing of the Trained Neural Network 

The performance of the MLP network on the test data set has been evaluated. The 
net work was found to generalize well with the test data. Figure 4 shows the performance 
of the MLP on test data set. 
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Fig.4. Performance of the MLP network on the test data. 

Performance of the RBF neural network on the test data set is shown in Figure 5. 

 
Fig.5. Performance of the RBF network on the test data. 
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The RBF network is also found to generalize well with the test data set. 

RESULTS AND DISCUSSION 

The Mean Square Error (MSE) of the test data set is the criterion used to evaluate 
the accuracy of the Neural Network. Lower MSE implies higher accuracy. MSE is 
calculated using the equation 5: 

∑
=

−=
N

1i

2
ii )at(

N
1MSE  (5) 

where: 

N= size of the testing data set. 

ti = desired output value for the ith input data. 

ai = predicted output value for the ith input data by the model. 

The MSEs of the MLP and RBF neural networks on the test data set has been 
compared with that obtained for the ∆T method and the Multiple Linear Regression. 
These results are shown in Table 5. 
Table 5. Comparison of the Neural Networks with Regression, and ∆T method. 

 MLP RBF Multiple Linear Regression ∆T method 

MSE 0.02 0.03 0.12 0.002 

 

It can be seen that the mean square error is the least for the ∆T method. However, 
this method needs information about eutectic growth temperature of the unmodified 
alloy. The advantage of ANN approach is that it just requires the TA parameters and 
doesn’t need any other information. But it still provides very high accuracy. The two 
feed forward neural networks developed in this project have been compared in terms of 
the MSE on the test data and the training time. Refer Table 6. 

Table 6. Comparison of the Feed Forward Neural Networks. 

Neural Network MSE 
Training Time 

(Seconds) 

MLP 0.02 20.77 

RBF 0.03 2.38 

 

It can be seen that the MLP gives the lowest MSE. However, it should be noted that 
since MLP starts with random initial weights each time when the program is run, so that 
the MSE will not be the same lowest value every time. For, RBF network the MSE of 
the test data set will be the same every time when the program is run. The training time 
of the RBF network is much lower than that of the MLP network. 
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CONCLUSIONS 

Two feed forward neural network models have been successfully developed to 
predict silicon modification level of the W319 Al alloys using the thermal analysis 
parameters as the inputs. The developed networks are a Multilayer Perceptron (MLP) 
network with two hidden layers and a Radial Basis Function (RBF) network with one 
hidden layer. The networks were found to generalize well with the test set data. The 
performances of the neural networks were compared with the ∆T method, and a Multiple 
Linear Regression Model. It has been found that the Neural Network models could 
accurately predict the SiML, just by using the TA parameters as the input. This shows 
that ANN in conjunction with TA can be used as a tool for the on-line prediction of 
SiML.  The comparison of the MLP and RBF networks shows that the training time of 
the RBF network is much lower than that of the MLP network. 
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