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ABSTRACT 

Three variants of region-based image similarity models employing the Earth 
Mover's Distance (EMD) function for automated mineral recognition and identification 
in the field of mineralogy and metallurgy are presented. By allowing for comparison of 
images with different number of regions, two models are proposed that take advantage 
of important characteristics of the EMD, that make it particularly suitable for the 
region-based image similarity modeling. A third model that takes into consideration 
five different region-based image similarity models and overcomes the limitations of 
the existing fixed-resolution image similarity models is further proposed. The three 
proposed variants share the image features but differ in the way the image feature based 
flow matrix and feature distribution elements of the EMD are modeled. Empirical 
evaluation of the three variants on four test databases, containing 3,000 images in 30 
semantic categories was carried out. The results obtained from the evaluation revealed 
that EMD cross-resolution image similarity modeling results in optimal retrieval 
performance, and provide information useful for adopting the EMD into a region based 
image similarity modeling. The experimental evaluation presented may thus be helpful 
for improved mineral recognition and identification. 
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1. INTRODUCTION 

The study of minerals using optical techniques, principally employing a optical 
microscope is most commonly undertaken to obtain information such as mineral 
identity, chemical composition, structural state and growth. (Optical) examination of 
mineral samples is typically required before more sophisticated techniques are 
employed, and thus optical identification of minerals is routinely done in the study of 
rocks and mineral deposits. While this information can be obtained by other more 
sophisticated techniques such as a X-ray diffraction, X-ray fluorescence or electron 
microscopy, the methods of optical mineralogy have an advantage that they are really 
simple, inexpensive, reliable, reasonably accurate and require small samples [4]. Until 
now, mineral identification and analysis is mostly done manually by fixing and 
collecting several optical properties of minerals under polarizing microscope [4], [3]. 
Manual techniques for mineral recognition and (or) classification are mostly tedious 
and error prone and moreover time consuming. 

With an objective to overcome these limitations automatic mineral identification 
and retrieval based on the digital image analysis is desired. Image processing and 
retrieval techniques based on the image feature analysis are utilized. In terms to get the 
best method for automatic and more accurate mineral identification [4], [3], by allowing 
for comparison of images with different number of regions, two models are proposed 
that take advantage of important characteristics of the Earth Mover's Distance (EMD) 
function [17], that make it particularly suitable for the region-based image similarity 
modeling. A third model that takes into consideration five different region-based image 
similarity models and overcomes the limitations of the existing fixed-resolution image 
similarity models is further proposed. The three proposed variants share the image 
features but differ in the way the image feature based flow matrix and feature 
distribution elements of the EMD are modeled. Thus overcoming both the fixed number 
of regions pre-determined by the image segmentation algorithm and the limitations of 
fixed-resolution image similarity models is achieved. The evaluation is carried out on a 
mineral image test database, containing 3,000 images in 30 semantic categories. In 
total, over 900,000 queries are executed, based on which the (weighted) precision and 
average rank are computed. 

The reminder of the paper is organized as follows: In II, Image Similarity 
Modeling works in Mineral Processing are described. Image Sample Characteristics 
and Retrieval Strategy are presented in III. The experimental results concerning the 
effectiveness and efficiency of the proposed methods are outlined in IV. 

2. BACKGROUND: IMAGE SIMILARITY MODELING 
IN MINERAL PROCESSING 

Recognizing different mineralogical species is usually realized by means of optical 
microscopy, sometimes supplemented by electron microscopy and image analysis 
system [4], [7]. The analysist is usually an applied mineralogist with the great 
experience and patience in carrying out determinations. The work is very boring and 
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repetitive, and for this reason there is always the possibility of the introduction of errors 
in the determinations. 

Techniques for image processing and recognition have been successful in recent 
years due to the low cost of hardware devices for image acquisition and manipulation 
and an improvement in their technical characteristics (speed, resolution, processing 
time, etc.) [4], [5] and [6]. The possibility of using real color images, characterized by 
triplet of information (three components: RGB), acquired optically, opens a new 
chapter in the field of process mineralogy. Such procedures in fact have lower costs 
than systems based on electron beam instruments. Thus a significant aid can be 
provided by image analysis and the related built-in recognition algorithms. The 
advantage of these procedures is linked to the fact that they are inexpensive and allow 
the acquisition, the processing and storing of a large number of images, increasing the 
significance of the investigation results and replacing the experts in the analysis. 

As already mentioned, different research groups have tried to techniques for image 
processing and recognition in mineral recognition purposes. Besides [4], [5] and [6] 
similar techniques were also developed out and used by Imperial College group [8], 
CSIRO [9] and CANMET [10]. However, the limitation of these methods are mainly 
based on image processing techniques where the signal source was not represented by a 
wavelength distribution (grey-level histogram) in the visible spectrum, but by a source 
X-rays. Thus it might be rather dif�cult to arrange and utilize them outside a high 
technological scientific environment. In other cases the image processing techniques 
are based on the black and white images only [13]. 

The problems of image processing and recognition techniques for mineral 
recognition purposes are addressed by modeling image similarity by allowing for 
comparison of images with different number of regions. In such a way, two models are 
proposed that take advantage of important characteristics of the Earth Mover's Distance 
(EMD) function [17], that make it particularly suitable for the region-based image 
similarity modeling. A third model that takes into consideration five different 
region-based image similarity models and overcomes the limitations of the existing 
fixed-resolution image similarity models is further proposed. 

3. IMAGE SAMPLE CHARACTERISTICS 
AND RETRIEVAL STRATEGY 

As a common approach, the mineral images are transformed into high-dimensional 
feature vectors and the similarity is measured in terms of vicinity in the feature space. 
Such a system architecture is shown on Fig. 2. Although the Euclidean distance is a very 
common distance function for the high-dimensional feature vectors, such as a feature 
histograms, it exhibits sever limitations with respect to similarity measurements. In 
particular, the individual components of the feature vectors which correspond to the 
dimension of the feature space are assumed to be independent of each other [11]. No 
relationships of the components such as substitutability and compensability may be 
regarded. To overcome this limitation, image similarity is measured in terms of vicinity 
in the feature space by means of the Earth Movers Distance function, introduced by 
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Rubner et al. [17]. Accordingly, differences in the three model variants arise from the 

way in which the image feature distributions [17] KxmRwX ∈),( and KxnRuY ∈),(  

are modeled and incorporated into the EMD region-based image similarity modeling. 
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Figure 1. Proposed System Architecture 

 

distance is a very common distance function for the high-dimensional feature vectors, 
such as a feature histograms, it exhibits sever limitations with respect to similarity 
measurements. In particular, the individual components of the feature vectors which 
correspond to the dimension of the feature space are assumed to be independent of each 
other [11]. No relationships of the components such as substitutability and 
compensability may be regarded. To overcome this limitation, image similarity is 
measured in terms of vicinity in the feature space by means of the Earth Movers 
Distance function, introduced by Rubner et al. [17]. Accordingly, differences in the 
three model variants arise from the way in which the image feature distributions [17] 

KxmR)w,X( ∈ and KxnR)u,Y( ∈ are modeled and incorporated into the EMD 

region-based image similarity modeling. 

3.1. Sample Preparation and Data Acquisition 

3000 mineral JPEG images of different world-class specimen photos, from the 
Photo CD collection [2] have been used in the experimental evaluation. Mineral images 
are 24 bit color depth and 1024 x 768 pixels high-quality of high resolution JPEG 
standard. Some of the database samples are shown in Fig. 1. Mineral identification from 
[2] is according to the mineral classification given in the Table I and has been given at 
[1]. According to [1], the identification key is based on simple mineralogical tests such 
as luster, hardness, color and physical description for the most common minerals an 
individual is likely to encounter. Minerals are ordered by their physical and optical 
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properties. The experimental evaluation is done on mineral species according to their 
color property (cf. Table I). This provides the ground truth necessary for the 
experimental evaluation. 

 

     

Figure 2. JPEG images of different world-class specimen photos from Photo CD collection [2] 

Table 1 - Minerals by physical and optical properties table classified as in [1]. 
Physical Properties Optical Properties 

Hardness, 
Streak, and 

Luster 

Cleavage  
and Fracture 

Density Refractive 
Index Colour 

Metallic by 
Hardness and 

Streak 
With No Cleavage Metallic by Density Isotropic 

Black 
 

Non-Metallic by 
Hardness and 

Streak 
With One Cleavage Non-Metallic by 

Density Uniaxial Blue 

With a Coloured 
Streak sorted by 
Streak Colour 

With Two Cleavages  Biaxial . . . … 

 With Three or more 
Cleavages  Opaque Yellow 

3.2. Mineral Image Feature Representation 

Color features of mineral images are represented by RGB color histograms, 
resulting in the 125-D feature vector. Similarity of the image regions is modeled in 
terms of similarity distributions of color distributions. 

Shape features of mineral images are represented by the edge direction histogram 
[14], resulting in the 8-D feature vector. Similarity of the image regions is modeled in 
terms of similarity distributions of edge directions. 

Texture features of mineral images are represented by the texture neighborhood 
[15], resulting in an 8-D feature vector. Similarity of the image regions is modeled in 
terms of similarity distribution of pixels brightness. 

3.3. Region-based Image Similarity Modeling 

Each sampled image is uniformly partitioned into regions (i.e., rectangular blocks 
of equal size) at five different resolutions, 1x1, 2x2, 3x3, 4x4 and 5x5 

(resolution }5,4,3,2,1{∈ . Accordingly, depending on the resolution, the number of 

regions per image for the above models is between 1 and 25 (number of 
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regions }25,16,9,4,1{∈ . Each resolution corresponds to a different image similarity 

model for each of the two EMD region-based model variants. More precisely, image 
similarity is based on how to express the user's similarity criteria represented by means 
of low-level image feature representation (e.g. color, shape, texture etc.) and image 

feature similarities (distance function, e.g. EMD, 1L , 2L  etc.). 

3.4. Region-based Image Similarity Modeling Variants 

1) Image Area Model: When incorporating image feature distribution into EMD 
region-based image similarity modeling: 

• an image is described as the set of uniformly partitioned image regions, where each 
region is described by three finite discrete distributions of colour, shape and texture 
features. 

• for each image region, an element xi(1≤i≤25,x Є{color, shape, texture}) belonging 
to a vector x as a component of the histogram employed is equivalent to the 
“feature” defined in [17]. 

• for each image region, ])1,0[w,25i1,i(w ii ∈≤≤∀  corresponds to a percentage of 

the relative area of an image region, covered by the extracted feature vector x. It is 
equivalent to the “weight” defined in [17]. As all image regions cover the same 
percentage of the overall image area (in any resolution) and there are resolution x 

resolution image regions, all iw values are defined by: 

)1(i,1regionareaw,
ionsumberofreglntota

1w
m

ii
i

m

ii
ii ∑∑

==
∀===  

representing the uniform weight's distribution of the image region areas within an 
image. 

• thus, an element describing the image region appears to be the feature vector (co-
ncatenation of the colour, shape and texture descriptors, feature vectors) of one re-

gion. ),regionarea,textureshapecolor(element
Ww

region

Xx

regionregionregioni

ii

44 344 21444444 3444444 21
∈∈

++=  region }25,...1{∈ . 

• the set of the vectors corresponding to all the regions of an image image is equiva-

lent to the set: i
Kxm

image }element{R)w,X(set ≡∈≡ , }.25,...1{i∈  
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the distance between two images is the single EMD between two sets associated 
to the query image q, setq and a database image i and 

iset })element{},element({EMD)setset(EMD)i,q(EMD iqi,q ≡≡  

When computing the EMD, regions having different positions in the two images 

can be matched. This is not the case if a pL distance functions are used between the 

long vectors grouping the feature vectors of all the regions in an image.  

1) Range Model: When incorporating image feature distribution into EMD 
region-based image similarity modelling, the following definitions are applied: 

• an image is described as the set of uniformly partitioned image regions, where each 
region is described by three finite discrete distributions of colour, shape and texture 
features. 

• for each image region, })texture,shape,colour{x,25i1,i(wi ∈≤≤∀  belonging to a 

vector X, as a component of the histogram employed is equivalent to the “weight” 
defined in [17]. 

• for each image region, an element })texture,shape,color{x,25i1(xi ∈≤≤  is 

equivalent to the “feature” defined in [17]. 

• thus, an element describing the image region appears to be a component of the 
feature vector of either the colour, shape or texture descriptor of one region and a 

component of the vector: )5(),w,x(element iii  

• the vector corresponding to a single image region of an image image is equivalent 

to the set : )6(}element{R),w,X(set i
Kxm

region ≡∈≡ , }25,...,1{i∈  

• for every region, distance between regions corresponding to the query image q and 
a database image i having same position is calculated as the average of the three 
EMD distances computed for three discrete distributions. This implies that for each 
region and its feature, there is a single EMD calculated for each image feature. 

)7()),i,q(EMD)i,q(EMD)i,q(EMD(
3
1)i,q(EMD textureshapecolourregion ++=  

• the overall image distance between query image q and a database image i is 
calculated as the average of EMD distances computed on the regions having same 
position. 
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∑
=

∈∀≡
R

1gionRe
gionReRange )8(},25,16,9,4,1{R),i,q(EMD

R
1)i,q(EMD  

where R denotes number of segmented image regions. The reason for this is that the 
arithmetic mean (or more generally a subset of a class of the averaging operator) is 
employed by the most the most image similarity models. 

Thus, in contrast to IAM or Cross-resolution model but similar to Lp distance 
functions, when computing the EMD, only regions having same positions in the two 
images can be matched. 

1) Cross-Resolution Image Similarity Modelling Model: 

From the viewpoint of the number of regions used to represent an image content 
when approximating user's similarity criteria, most of the image similarity models [12], 
[16], [18], [19] are fixed ones, with a respect to a finite number of regions (objects) 
produced by different segmentation techniques. The limitation of such fixed image 
similarity models is that the existing segmentation algorithms are inaccurate, i.e., the 
resulting regions are roughly, if at all, corresponding to the objects appearing in the 
image. To adequately combine the characteristics of different segmentations (expressed 
as a single image similarity model) such that negative peculiarities of the individual 
segmentations can be masked by others, a cross-resolution model as a special variant is 
proposed which takes into account all five region-based image similarity models 
simultaneously when computing the image similarity. Initially, each of the five 
region-based image similarity models represents an image when querying the images 
within a database on its own as finite number of regions (objects). Next, a multi image 
representation expressed as a set of multi image similarity models, each of which is in a 
different resolution is obtained as a mixture of all regions from all five region-based 
image similarity models. All regions from five fixed-resolution region-based image 
similarity models are represented as equally important. A single EMD computation is 
utilized on all regions to find out the distance between a set of regions providing an 
overall similarity between two images. According to its definition, the match between 
two images is obtained by mixing all regions at all different levels. Regions from each 
fixed-resolution are treated as a weighted point sets. The way in which cross-resolution 
is modelled is as following: 

• an image is described as the set of all uniformly partitioned image regions, 
provided by five uniform image partitionings. Each region is described by 
three finite discrete distributions of colour, shape and texture features. 

• for each image region, an element })texture,shape,color{x,25i1(xi ∈≤≤  

belonging to a vector x as a component of the histogram employed is 
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equivalent to the “feature” defined in [17]. It is modeled in the same way as 
for IAM model, described in III-D.1. 

• thus, an element describing the image region in a single (fixed) resolution 
appears to be the feature vector (concatenation of the colour, shape and 
texture descriptors) of one region, just as modelled for the case of IAM model 
in III-D.1. 

• let a term Cross-Resolution Set denote the set of the vectors corresponding to 
all the image regions in a fixed resolutions: 

)9(},5,...,1{resolution},25,...,1{i},)regionarea,element({tsolutionSeReCross
utionfixedresol

ii ∈∈∀≡−
4444 34444 21

 

thus each of the associated Cross-resolution Sets for both query image q and a database 
image i consists of five Resolution Sets, where each Resolution Set is a descriptor of an 
image in a fixed resolution. 

,)}q(tsolutionSe{Re,....,)}q(tsolutionSe{Re)q(tsolutionSeReCross

))q(resolutioncross

5resolution

5

1resolution

1

44444444 344444444 21
444 3444 21444 3444 21

−

≡−
 

,)}i(tsolutionSe{Re,....,)}i(tsolutionSe{Re)i(tsolutionSeReCross

))i(resolutioncross

5resolution

5

1resolution

1

44444444 344444444 21
444 3444 21444 3444 21

−

≡−  

• the distance between two images is the single EMD between two sets associated 
to the query image q, Cross-Resolution Set(q) and a database image i, 
Cross-Resolution Set(i). 

)10(},)i(tsolutionSeReCross,)q(tsolutionSeReCross{EMD)i,q(EMD
)i(resolutioncross)q(resolutioncross
4444 34444 214444 34444 21

−−

==≡  

• when computing the EMD distance between two sets (associated to two images 
q and database image i), regions at different resolutions can now be matched 
(though, weights appear to be different for different resolutions). 

When computing the EMD, regions having different positions in the two images 

can be matched. This is not the case if a pL distance functions are used between the 

long vectors grouping the feature vectors of all the regions in an image. 
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4. EXPERIMENTAL EVALUATION 

All the experiments are performed on AMD Athlon 64-bit Processor Machine, 
with 256 MB RAM Memory. Mineral database [1] is used when conducting 
experiments, containing 3,000 images divided into 30 semantic categories. Test 
database originate from the well-known mineral image collection [1], used for the 
evaluation of mineral image retrieval systems. Partitioning of each database into 
semantic categories is determined by the creators of the database based on the optical 
(color) characteristics of the minerals [1]. The query image and the set of candidate 
images are both predefined by the testing database. The semantic categories define the 
ground truth so that, for a given query image, the relevant images are considered to be 
those and only those that belong to the same semantic category as the query image. This 
implies that the number of relevant images for a given query image equals the number 
of images in the category to which that image belongs.  

The performance measures are: (1) precision [P.], (2) weighted precision [W.P.], 
(3) average rank [A.R.]. All the performance measures are computed for each query 
image, based on the given ground truth. Since each image, in each test database, is used 
as a query, all the performance measures are averaged for each test database 
(database-wise average performance). Having defined the computation method of the 
image similarity based on low-level image features, given a query image, all databases 
images are ranked in ascending order with respect to their distance to the query image. 
For each query, all the performance measures are computed. 

4.1. Cross and Resolution wise comparison to Global EMD Models 

As shown in the Table II, it can be seen that, in terms of retrieval effectiveness 
measured by P., W.P. and A.R. that IAM model generally performs better than the 
Range model in all resolutions. In the case of the Range model, in most cases, global 
image representation (resolution 1x1) provides optimal retrieval performance. It is 
decreased by EMD region-based modeling. In case of the IAM model, the opposite is 
observed. Even though each pair of matching regions employs a single EMD 
computation, contrary to expectations, the IAM model outperforms the Range model in 
both global and region-based image similarity modeling. The first reason for the 
unexpected result is that, in the case of the Range model, the distribution of the 
extracted image feature values that are used as “weight“ is non-uniform. This is 
contrary to the first model, in which the distribution of such values is uniform. 
Furthermore, in terms of shape and texture image features, extracted feature values 
modeled as “weights“ show distribution of edge directions (texture neighborhood 
pixels) over eight quantized ranges. In the case of color, these are the distributions of 
image pixel values quantized over 125-D ranges. On the other hand, with respect to the 
first model, modeling “weight“ is completely independent of image visual content, as it 
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is not reflected throughout modeling the “weight“. Thus capturing underlying image 
semantics is expected to be better approximated by the Range model than in the case 
when the “weight“ is modeled independently from the actual visual image content, and 
the overall EMD distance merely depends on the cost matrix predefined by the 
extracted feature values. However, the experimental results could be explained by the 
Range model high data dependency (extracted feature methods used) when modeling 
feature distributions. 

When compared to the cross-resolution EMD model, both IAM and Range are 
outperformed (Table II). The difference between the cross-resolution model and the 
global IAM and Range models ranges between 10% and 30%. The integration of five 
region-based image similarity models (each one for different resolution, into the overall 
image similarity by EMD matching, accounts for better perceptual similarity than the 
IAM and Range models. Five fixed-resolution region-based image similarity models 
employed within the cross-resolution model provide additional information that is not 
available to the IAM and Range models. The higher discriminative power of the image 
visual content is ordered by the simultaneous use of five resolutions when modeling 
image similarity. 

As seen in Table II, IAM Model performs optimally when compared to city-block 
distance function both for global and region-based image similarity modeling. The 
difference in retrieval performance between the IAM model and Euclidean distance is 
smaller compared to the Range model. 

The larger drop in retrieval performance appears for the Range model compared to 
the Euclidean and city-block distance. In most cases, optimal retrieval performance for 
the Range model is provided by global image representation. 

In terms of the effect of region-based modeling on retrieval efficiency, it is noted 
that the Euclidean and city-block distances have a tendency to behave between the IAM 
and Range models on the mineral database. The retrieval performance is slightly 
improved (decreased) by increasing the number of regions employed. As shown in 
Table II in a similar fashion to the Range model, the region-based modeling decreases 
retrieval performance when Euclidean or city-block distance functions are employed. 
Table 2 - Resoltion wise evaluation of the proposed emd region-based models on 

mineral image database: average values of the retreival precision (p.), weighted 
precision (w.p.), average rank are given. each value is an average of 3,000 queris 
evaluated over the mindeal image database 

Res City-block Euclidean IAM Range 

 P. 
[%] 

W.P. 
[%] 

A.R. P 
[%] 

W.P. 
[%] 

A.R. P 
[%] 

W.P. 
[%] 

A.R. P. 
[%] 

W.P. 
[%] 

A.R. 

1x1 46.35 62.72 131.62 51.60 68.45 118.25 51.60 68.45 118.25 36.97 53.39 155.1 

2x2 44.74 60.81 137.37 49.88 66.29 123.74 52.59 69.39 116.17 35.11 50.66 183.25 
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3x3 42.40 58.52 143.43 33.29 64.19 130.02 53.74 70.46 114.59 34.86 50.59 165.2 

4x4 40.4 56.35 149.6 32.92 43.63 136.93 54.38 71.13 113.14 33.15 48.69 170.98 

5x5 38.43 54.22 156.55 43.76 60.21 144.89 55.2 71.84 111.97 30.73 45.23 173.17 

  P. 
[%] 

  W.P. 
[%] 

  A. R.     

C.R.  62.39   73.58   67.44     

 

5. CONCLUSION 

EMD region-based image similarity modeling and its effect on the retrieval 
performance applied to mineral image similarity modeling are investigated. By 
complementary modification of the way in which the cost matrix and feature 
distributions are modeled, two EMD region-based image similarity models are 
proposed. An additional special cross-resolution EMD region based image similarity 
model is also proposed. Comparison and analysis of the image retrieval performance of 
the three EMD region-based image similarity models is performed. Comparison to 
representative region-based image similarity models employing Euclidean and 
city-block distance function is also performed. 

The evaluation is carried out on a test database, containing 3,000 images in 30 
semantic categories. In total, over 900,000 queries are executed, based on which the 
(weighted) precision and average rank are computed. 

The research strategy in terms of the image similarity modeling applied to the 
selection of similarity criteria seems to be the most important aspect and strongly 
influences the quality of results derived from an analysis of this kind. When employed 
within the EMD region-based image similarity modeling, cross-resolution model 
provides optimal retrieval performance on mineral database. The difference in the 
average retrieval precision compared to the two other proposed EMD region-based 
image similarity models is between 10% and 30%. Contrary to expectations, though 
possessing the highest computation complexity, the Range model shows the worst 
retrieval performance. The results of the evaluation suggest that, when modeling 
region-based similarity modeling within an EMD framework, in terms of the low-level 
image features, the discretization of the point feature distribution provides better 
retrieval performance than when low-level image features are modeled as point 
weights. When modeling image similarity, by allowing different similarity criteria with 
a different number of region-based similarity models, EMD cross-resolution modeling 
provides optimal retrieval performance. Such experimental evaluation might be helpful 
for further understanding of EMD region-based image similarity modeling in various 
industrial domains, such as mineral species recognition and identification. 
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