Savez inženjera metalurgije Srbije i Crne Gore Originalni naučni rad UDC:669.772.874-492.2"n":620.179=861

RAMANOVO RASEJANJE NA Ce_{1-X}Y(Nd)_XO₂ NANOPRAHOVIMA

RAMAN SCATTERING STUDY OF Ce_{1-X}Y(Nd)_XO₂ NANOPOWDERS

M. GRUJIĆ-BROJČIN¹, Z. DOHČEVIĆ-MITROVIĆ¹, M. ŠĆEPANOVIĆ¹, Z. V. POPOVIĆ¹, S. BOŠKOVIĆ², M. ZINKEVIC³, F. ALDINGER³ B. MATOVIĆ²

¹ Institut za fiziku, Zemun, SCG, ² Institut za nuklearne nauke Vinča, SCG ³ Maks Plank Institut, PML, Štutgart, Nemačka

Primljeno: 10. 01. 2006.

APSTRAKT

Nanometarski prahovi cerijum oksida dopirani itrijumom i neodimijumom $Ce_{1-x}Y(Nd)_xO_2$ (0,1<x<0,25) sintetizovani su koristeći samopropagirajuću sintezu na sobnoj temperaturi (SPRT). Veličine kristalita dobijenih prahova, određene metodom rendgenske difrakcije, su reda 4-6 nm, dok su dimenzije zrna (određene SEM metodom) oko 12 nm. Raman spektri ovih oksida potvrđuju da su proučavani uzorci čvrsti rastvori nanometarskih dimenzija.

Ključne reči: CeO₂ dopirani nanoprahovi, SPRT metoda, Raman spektroskopija

ABSTRACT

Nanometric cerium powders doped with Y and Nd are obtained using self propagating room temperature synthesis (SPRT). Crystallite size of powders obtained by diffraction methods are about 4-6 nm, while the particle size (obtained by SEM method) is about 12 nm. Raman spectra of these oxides confirm that the samples are solid solutions.

Key words: CeO₂ doped nanopowders, SPRT method, Raman spectrocopy

UVOD

Tehnologija gorivnih ćelija predstavlja ključnu tehnologiju 21-og veka. Zbog toga su današnja istraživanja usmerena ka dobijanju i razvoju nove generacije materijala za gorivne ćelije, sa znatno nižim troškovima proizvodnje, koji bi omogućili njihovo funkcionisanje na temperaturama od 500-700 °C. Cerijum dioksid (CeO₂) se danas intenzivno izučava, jer je dobar katalizator i spada u materijale sa visokim indeksom refrakcije, ali je veoma interesantan kao keramički elektrolit za čvrste gorivne ćelije [1, 2]. Ultrafini prah CeO₂ se danas koristi za snižavanje radne temperature gorivnih ćelija od 1500^oC na 1200 ^oC [3]. Konvencionalne metode dobijanja ovog praha nisu u stanju da obezbede uniformnu raspodelu čestica što je veoma bitan uslov za sniženje temperature sinterovanja. S druge strane, poznato je da je provodnost nanokristalnih materijala veća što su čestice manje i raspodela uniformnija, što je još jedan važan uslov za značajno sniženje radne temperature gorivnih ćelija. Zato je veoma važno proizvesti prahove nanometarskih dimenzija, uniformne raspodele i precizne stehiometrije. Cerijum dopiran elementima retkih zemalja pokazao se kao dobar elektrolit za gorivne ćelije, sa odličnom provodljivošću na nižim temperaturama zbog postojanja kiseoničnih vakancija u cerijumovoj rešetki, koje nastaju zamenom Ce^{IV} jona sa trovalentnim jonima retkih zemalja [4].

U ovom radu je prikazan metod dobijanja CeO_2 , $Ce_{1-x}Y_xO_2$ i $Ce_{1-x}Nd_xO_2$ prahova (0<x<0,25) koristeći samopropagirajuću sintezu na sobnoj temperaturi (SPRT) [5]. Spektri Ramanovog rasejanja pokazuju da se radi o čvrstim rastvorima nanometarskih dimenzija, a ne o mehaničkoj smeši što je u saglasnosti sa rezultatima rendgenske difrakcije (XRD).

EKSPERIMENT

Nanometarski prahovi CeO₂ kao i Ce_{1-x}Y(Nd)_xO₂ dobijeni su metodom samopropagirajuće sinteze na sobnoj temperaturi, koristeći kao polazne supstance cerijum nitrat, itrijum nitrat ili neodimijum nitrat i natrijum hidroksid [5]. Količine metalnih nitrita, kao i natrijum hidroksida izračunate su u cilju dobijanja nominalne kompozicije čvrstih rastvora. Ova rekacija se može predstaviti kao:

$$2[(1-x)Ce(NO_3)_3 \cdot 6H_2O + xMe(NO_3)_3 \cdot 6H_2O] + 6NaOH + (1/2-y)O_2 \rightarrow 2Ce_{1-x}Me_xO_{2-y} + 6NaNO_3 + 15H_2O$$
(1)

Ručno mešanje vršeno je sve dok mešavina nije dobila svetlo braon boju. Posle oko 3 sata stajanja na vazduhu, mešavina je rastvorena u vodi. Ova procedura je ponavljana nekoliko puta pre konačnog sušenja prahova.

Uvodeći mehaničku energiju u sistem očekuje se da će se reakcija ubrzano odvijati na sobnoj temperaturi i na vazduhu. Oslobađanje vode iz nitrata čini ručnu homogenizaciju prahova lakšom i dovodi do bliskog kontakta reagujućih čestica tokom mešanja, što sa druge strane dovodi do ubrzavanja reakcije. Stajanje na vazduhu omogućava da se reakcija do kraja izvrši prema jednačini (1). Ovako dobijeni prahovi analizirani su metodom rendgenske difrakcije (XRD) i skenirajućim elektronskim mikroskopom (SEM). Raman spektri su snimani na sobnoj temperaturi u "back scattering" geometriji linijom Ar⁺ jonskog lasera na 488 nm, koristeći Jobin-Yvon U1000 monohromator.

62

REZULTATI I DISKUSIJA

Kristalna struktura nanoprahova CeO₂, Ce_{1-x}Y_xO₂ i Ce_{1-x}Nd_xO₂ (0<x<0,25) analizirana je XRD metodom, dok su dimenzije čestica određene Šererovim i SEM metodom [5]. Rezultati su prikazani u Tabeli I.

Sastav	Veličina kristalita (nm) XRD		Veličina čestica (nm) SEM	Specifična površina (m ² /g)
	а	b	а	a
CeO ₂	4,2	26.7	16	106.9
$Ce_{0.90}Y_{0.10}O_2$	4,3	21	14	103.2
Ce _{0.85} Y _{0.15} O ₂	4,2	20.1		137.1
$Ce_{0.80}Y_{0.20}O_2$	5,0	18.8		109.7
Ce _{0.75} Y _{0.25} O ₂	5,6	17.9		94
$Ce_{0.90}Nd_{0.10}O_2$	4,4	17		118.4
$Ce_{0.85}Nd_{0.15}O_2$	4,4	14.8		137.6
$Ce_{0.80}Nd_{0.20}O_2$	4,2		10	141.5
Ce _{0.75} Nd _{0.25} O ₂	4,1	13.3		99.6

Tabela I - Veličina kristalita, čestica i specifična površina netretiranih prahova [5]

a - netretiran prah, b - termički tretirani prahovi na 600°C u vazduhu četiri sata

Cerijum dioksid je kubne sfaleritne strukture. Prema selekcionim pravilima, za ovu strukturu očekuje se pojava samo jednog Raman aktivnog moda simetrije F_{2g} . U spektrima monokristala CeO₂ ovaj mod se pojavljuje na 465 cm⁻¹. Pored ovog moda, uočeno je i postojanje nekoliko Ramanovih modova drugog reda [6]. U Raman spektru CeO₂ nanopraha prikazanom na slici 1 dominira Raman mod na 454 cm⁻¹ koji predstavlja simetrične "dišuće" vibracije koseonikovih atoma oko cerijumovih jona. Prisutan je i dosta širok mod na ~600 cm⁻¹, koji potiče od kiseonikovih vakancija u cerijumovoj rešetki [6, 7].

Ako se ovaj spektar uporedi sa Ramanovim spektrom monokristala CeO_2 (dat u insetu na slici 1), vidi se značajni frekventni pomak (oko 10 cm⁻¹) moda F_{2g} ka nižim frekvencijama i njegovo asimetrično širenje, što ukazuje da su dimenzije čestica vrlo male i da je efekat kvantnog konfajnmenta dominantan [8]. Raman spektri cerijumovih nanoprahova dopiranih itrijumom i neodimijumom prikazani su na slikama 2 i 3. Oznake "*" predstavljaju plazma linije Ar⁺ lasera korišćene za kalibraciju.

Slika 1. Raman spektar CeO_2 nanopraha na sobnoj temperaturi. U insetu slike upoređen je spektar nano i monokristala CeO_2 gde se jasno vidi pomeranje i asimetrično širenje F_{2g} moda u odnosu na monokristal Figure 1. Raman spectrum of CeO_2 nanopowder at room temperature. The spectra of nanosized and monocrystal CeO_2 are compared in the inset, where the shift and asymetric broadening of F_{2g} mode is clearly shown

Slika 2. Raman spektri $Ce_{1-x}Y_xO_2$ nanoprahova Figure 2. Raman spectra of $Ce_{1-x}Y_xO_2$ nanopowders

U obe serije prahova primećeno je asimetrično širenje i smanjenje intenziteta F_{2g} moda sa povećanjem stepena dopiranja (x). U spektrima obe serije prisutan je i mod na ~600 cm⁻¹, čiji intenzitet postepeno raste sve do vrednosti x=0.2, što se može povezati sa povećanjem kiseonikovih vakancija. Naime, sa porastom x, Ce⁴⁺ joni zamenjuju se sa Nd³⁺(Y³⁺) jonima, što dovodi do stvaranja kiseonikovih vakancija u cerijumovoj rešetki i pojave lokalnog moda. Sa povećanjem stepena dopiranja (x>0.15) pojavljuje se i mod na ~550 cm⁻¹ koji potiče od Ramanovog rasejanja drugog reda [6]. Kod serije uzoraka Ce_{1-x}Nd_xO₂ sa porastom x dolazi do postepenog omekšavanja F_{2g} moda tako da u uzorku Ce_{0.75}Nd_{0.25}O₂ taj pomeraj iznosi skoro 5 cm⁻¹ u odnosu na čist CeO₂, što je posebno prikazano na slici 4. Kod serije uzoraka dopirane itrijumom uočen je veoma mali pomak (~1 cm⁻¹) frekvencije F_{2g} moda ka višim energijama.

Slika 3. Raman spektri $Ce_{1-x}Nd_xO_2$ nanoprahova Figure 3. Raman spectra of $Ce_{1-x}Nd_xO_2$ nanopowders

Pomak F_{2g} moda je znatno izraženiji kod uzoraka dopiranih Nd nego kod dopiranih Y, što se može objasniti razlikom jonskih radijusa ovih elemenata u odnosu na atom cerijuma. Dopiranjem se atomi Y(Nd) supstitucijalno ugrađuju u rešetku CeO₂, deformišući kristalnu strukturu, što dovodi do promene dimenzija elementarne ćelije, tj. međuatomskih rastojanja. Ova deformacija prouzrokuje promenu položaja Ramanovog F_{2g} moda. Ovi rezultati su u saglasnosti sa XRD rezultatima dobijenim za parametre rešetke ovih jedinjenja u funkciji koncentracije dopanata [5]. Zavisnost parametra rešetke dopiranih uzoraka od koncentracije dopanata prikazana na slici 5. Promena konstante rešetke je direktno povezana sa jonskom veličinom dopanta: veći dopant dovodi do dilatacije rešetke,

dok manji dopant dovodi do njene kontrakcije. Treba imati u vidu da u Raman spektrima dopiranih uzoraka nisu registrovani modovi polaznih oksida Y_2O_3 i Nd_2O_3 .

*Slika 4. Raman spektri CeO*₂, *Ce*_{0,75}*Y*_{0,25}*O*₂*i Ce*_{0,75}*Nd*_{0,25}*O*₂*uzoraka Figure 4. CeO*₂, *Ce*_{0,75}*Y*_{0,25}*O*₂*and Ce*_{0,75}*Nd*_{0,25}*O*₂*samples*

Slika 5. Promena parametra rešetke $Ce_{1-x}Y(Nd)_xO_2$ nanoprahova sa koncentracijom dopanata [5] Figure 5. The depennence of lattice parameter of $Ce_{1-x}Y(Nd)_xO_2$ nanpowders on the dopant concentration [5]

Na osnovu rezultata Raman spektroskopije i rendgenske difrakcije može se zaključiti da su dobijeni prahovi čvrsti rastvori, a ne mehaničke smeše.

ZAKLJUČAK

U ovom radu je pokazano da se SPRT metodom mogu dobiti nanometarski prahovi CeO_2 kao i prahovi cerijum dioksida dopiranog itrijumom ili neodimijumom ($Ce_{1-x}Y(Nd)_xO_2$). Rezultati Raman spektroskopije pokazali su da su dobijeni $Ce_{1-x}Y(Nd)_xO_2$ prahovi malih dimenzija zrna i da sa dopiranjem raste broj kiseonikovih vakancija, što utiče na provodnost ovih materijala. Na osnovu analize Raman spektara ovih uzorka, kao i rezultata XRD metode, može se reći da su dobijeni prahovi čvrsti rastvori, a ne mehaničke smeše.

Zahvalnost

Ovaj rad je urađen u okviru projekta 1469 Ministarstva za nauku i tehnologiju Republike Srbije.

LITERATURA

- M. Mogensen, N. M. Sammes, G. A. Tompsetti, Solid state Ionics 129 (2000) 63.
- [2] A. Tschope, D. Schaadt, R. Birringer J. Y. Ying, Nanostruct. Mater. 9 (1997) 423.
- [3] P. L. Chen, I. W. Chen, J. Am. Ceram. Soc. 76 (1993) 1577.
- [4] J. R. McBride, K. C. Hass, B. D. Poindexter, W. H. Weber, J. Appl. Phys. 76 (1994) 2435.
- [5] S. Bošković, D. Đurović, Z. Dohčević-Mitrović, Z. Popović, M. Zinkevich, F. Aldinger, J. Power Sources 145 (2005) 237.
- [6] W. H. Weber, K. C. Hass, J. R. Mcbride, *Phys. Rev.* B 48 (1993) 178.
- [7] M. D. Hernandez-Alonso, A. B. Hungria, A. Martinez-Arias, J. M. Coronado, J. C. Conesa, J. Soria, M. F. Garcia, J. Phys. Chem. 6 (2004) 3524.
- [8] J. E. Spanier, R. D. Robinson, F. Zhang, S.-W. Chen, I. P. Herman, *Phys. Rev.* B 64 (2001) 245407.