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ABSTRACT 
The present work describes the methodology that has been followed in order to 

model the flow curves for mixed steel microstructures. As a first stage, a physically 
based model has been developed in order to predict the mechanical behaviour of 
different steel micro-constituents. Nan hardness tests have been used in order to check 
the accuracy of such predictions when applied to each micro-constituent in the mixed 
microstructure. An auto consistent model has been feed with such formulas and applied 
to mixed microstructures. The results have been checked against tensile curves and the 
experimental determination of the strain partitioning allowed investigating the validity of 
the predictions. 
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INTRODUCTION 
The coupled combination of chemical composition and processing conditions is 

able to produce in steels a broad range of microstructures of significantly different 
mechanical behaviour. Most commonly, ferrite-pearlite, have been extensively applied in 
low carbon strips and structural steels for a broad range of applications requiring, 
depending on the application, moderate strength, good toughness, weldability and 
formability, among others. The increasing demand by the market of steel products with 
enhanced mechanical behaviour has lead to the extension of the range of microstructures 
being produced in strip and sections. 

In order to reach property combinations beyond the limit achievable with more 
conventional microstructures, higher complexity ones are progressively put into 
production. The direct consequence is that the determination of the relations between the 
microstructure and the mechanical behaviour becomes a problem of increasing 
complexity. Most of the equations already available in the literature for steel 
microstructures relate the yield stress or the tensile strength to the steel composition and 
to a series of variables related to the microstructure [1]. The prediction of the flow curve 
is mainly based on empirical formulations like the Ludvik-Hollomon equation and its 
variants. Such a formulation has mainly been applied for ferrite, but some expressions 
can also be found for other steel microstructures [2, 3, 4]. 

In a mixed microstructure formed by more than one micro-constituent, it is very 
often considered that the yield stress can be defined by the sum of the yield stress of 
each of the components weighted by its volume fraction. However, this quite simplistic 
approach gives very often significant deviations form experiment and is not able to 
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describe plasticity. The development of models for mixed microstructures requires more 
elaborated formulations [5]. The present work describes the methodology that has been 
followed in order to model the flow curves for mixed steel microstructures using 
physically based equations to predict the mechanical behaviour of each of its micro-
constituents. 

THE RULE OF MIXTURES 
For materials being constituted by two or more phases, the modified rule of 

mixtures [5] can be used as an homogenisation technique: 
σMix = f1 σ1 + (1-f1) σ2 (1) 
εMix = f1 ε1 + (1-f1) ε2 (2) 

with σMix and εMix being respectively the stress and the strain of the material and fi , σi and 
εi, the volume fraction, stress and strain of each one of its components.  

The Eq. 1 and 2 that can be considered as upper and lower bounds [6] are frequently 
taken separately assuming iso-strain or iso-stress. However, when the strength of both 
phases is significantly different these simplifications lead to predictions that are far from 
being accurate. The best known example affects ferrite-pearlite microstructures. Both 
micro-constituents have significantly different yield stresses, but an empirical equation 
has been proposed [7]: 

p
n

p
n

p ff σσσ α +−= )1(  (3) 

which is a modification of Eq. (1), in order to correct for the discrepancies with 
experiment when considering iso-strain. This empirical equation avoids for this 
particular case the complex resolution of the system defined by Eqs (1) and (2). 

STRAIN PARTITIONING 

Experimental evidence can be found showing that, in mixed microstructures, the 
strain does not distribute homogeneously between the micro-constituents [8,9, 10]. The 
strain partitioning has been determined from microstructure in ferrite-pearlite and in 
ferrite-martensite tensile specimens [9]. The micrograph sequences in Figs. 1 and 2 show 
the evolution of the mixed microstructures during the tensile tests. The ferrite is 
observed to deform preferentially when being together with a harder micro-constituent 
like pearlite or martensite. This is better appreciated in Fig. 3 in which the plastic strain 
in each of the micro-constituents has been plotted as a function of the macroscopic 
plastic strain in the specimen for ferrite-pearlite and ferrite-martensite microstructures. 
Pearlite enters plasticity, but in a significantly lower proportion than does ferrite. The 
main differences are observed for the 0.3%C steel in which case the volume fraction of 
pearlite reaches about 60%. The strain ratio slightly decreases for lower carbon content 
(0.15% C) and volume fraction of pearlite (30%). 

For the ferrite-martensite combinations, martensite is not observed to deform 
plastically to a significant extent before necking. This is a quite common behaviour due 
to a high stress ratio between ferrite and martensite. Most of the plastic deformation 
concentrates in ferrite and at increasing macroscopic strains, unless the internal stresses 
can be relaxed by the plastic deformation of the martensite, the plastic incompatibility 
leads to the formation of cracks like those, in the example shown in Fig. 4, affecting 
some interfaces located perpendicular to the tensile axis. 
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Fig. 1. Evolution, with the macroscopic plastic strain, 
of a ferrite (dark) pearlite (light) microstructure [9] 

     
Fig. 2. Evolution, with the macroscopic plastic strain, 
of a ferrite (dark) martensite (light) microstructure [9] 

ε =0 
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Fig. 3. Experimental true plastic strain partitioning for ferrite-pearlite 

and ferrite-martensite microstructures [9] 

 
Fig. 4. Cracks almost perpendicular to the tensile axis, formed in martensite bands at 

high macroscopic strains [9].    Ferrite (dark) martensite (light). 
Implementation of the models. The above results clearly show the inaccuracy of 

assuming iso-strain. Different approaches have been developed to solve analytically or 
by finite elements (FE) the system of equations defined by Eq. 1 and 2. The simplest 
approach is to use an arbitrary fitting parameter [5, 11]: 

21
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But other methods have also been used like the imposition of a given set of 
conditions like the macroscopic strain energy being an extreme [12] or the equality of 
the mechanical work increment in each micro-constituent [13]. 

Micromechanics, has also been applied that needs to solve the questions related to 
the matrix-disperse phase interaction and the interaction between the dispersoids. To 
answer to the first of these questions, self consistent models [14, 15] have been build up 
on the base of Eshelby inclusion theory [16]. The concept of the secant moduli [17] 
allows introducing into a relatively simple mathematical formulation the weakening 
constrain power of the matrix due to its plastic relaxation around the hard particles. The 
interaction between the disperse particles is best described through Mori-Tanaka [18] 
mean field approach.  

Most of the resultant models being currently used follow the method proposed by 
Tomota and coworkers [19] and divide the deformation range into three different stages:  

Stage I: Both phases deform elastically. 
Stage II: The soft phase deforms plastically and the hard one elastically. 
Stage III: Both phases deform plastically. 
Based on the secant moduli method, together with the Eshelby and mean field 

formulations, Weng [20] has developed a model applicable to two phase ductile 
materials. This new approach has been successfully applied to model the tensile curves 
in dual multiphase steels [21] and will be used here. 

The above models require the knowledge of the stress-strain behaviour of each 
micro-constituent into the mixed microstructure. 

FLOW CURVES FOR EACH MICRO-CONSTITUENT 
Empirical approach: The application of the above formulations for mixed 

microstructures requires, independently of the selected approach, the previous 
development of equations describing, as accurately as possible, the mechanical 
behaviour (stress-strain curve) for each micro-constituent. The most popular formulation 
based on empirical equations is the Ludvik-Hollomon equation: 

σ = Ko εn  (5) 
or some modifications of it, as for example the Swift-Griffits equation: 

σ = K (ε+εo)m (6) 
the limitation of these models is the reduced applicability, as they are based on fitted 
parameters that cannot easily be extrapolated to other conditions. For ferrite this has 
been overcome to a certain level relating the exponent n to the grain size [22] and to 
composition [2]. However, when the degree of complexity of the steel microstructure 
increases, the applicability of these empirical equations reduces. In some cases, the use 
of different n values is required in order to fit the flow curve over the entire deformation 
range [23]. 

Physically based models: An alternative to the empirical equations is the use of 
physically based models that link the micro and the macro scales and are expected to 
give more accurate results. Different dislocation based models can be found that have 
some differences in the formulation but all of them relate the strain hardening to the 
balance between the dislocation storage and recovery. 

The macroscopic flow stress, σ, and the plastic strain, ε, are related to the critical 
resolved shear stress for current microstructure state, τ, and amount of crystallographic 
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slip, γ, via an orientation factor, M as: σ = Mτ and M.dε = dγ. Assuming an average 
behaviour, the microscopic hardening rate of the crystalline element, θ = dτ/dγ  can be 
related to the macroscopic hardening as [24]: 

.2

ε
σθ

d
dM −=  (7) 

The classical relation between the flow stress and the total dislocation density is: 

σ = σo + Δσε = σo + α M μ b ρ  (8) 

with α a constant, M the Taylor factor, μ the shear modulus, b the Burgers vector and ρ 
the dislocation density. 

During deformation, the evolution of the dislocation density with strain is generally 
considered to depend on two terms [25]: 

eryrestored d
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d
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−=  (9) 

The substitution of M.dε = dγ allows expressing the change in dislocation density as 
a function of the macroscopic equivalent strain, ε. Different expressions have been 
deduced to express each term. Frequently [25,26], it is considered that: 
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with k2 a constant and L the dislocation mean free path. L can be expressed as being 
proportional to the average spacing of the homogeneously distributed dislocations, ρ-

1/2,or can alternatively be defined by some microstructural parameter like the subgrain 
size, the interparticle spacing or the grain size. The resulting equations and the results of 
the integration, considering ρo as being the initial dislocation density in the deformation 
free material give different results, depending on the chosen option [27]. After 
integration and substitution into Eq. 8, it results [9]: 
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The above formulation has been applied in order to predict the tensile curves for 
different steel micro-constituents. The application of these equations to the 
experimentally determined tensile curves requires some fitting exercise to determine the 
involved parameters. The practical result is that, independently of the approach being 
used, it is possible to predict with enough precision the tensile curve, by the correct 
selection of the parameters. In the work described here, care has been taken to relate the 
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different parameters involved into the equations to the main characteristics of each 
particular microstructure. 

For ferrite, given that the initial dislocation density before deformation is low, the 
following equation can be applied [9, 28, 29]: 

σ =σo+αMμ
L
Mb

2

2

k
k )exp(1 ε−−   (15) 

which is a simplified version of Eq. (12). In this equation, ε is the plastic strain, 
μ=80000MPa and b=2.5 10-10 m. There is some uncertainty concerning the value of α´= 
αM to be used. For the case of ferrite, factors of variation as high as 1.8 can be found 
between the α´ values reported by different authors, see Ref. [3]. This strongly affects 
the strain hardening contribution to the overall result of the modelling. In the present 
case, α=0.33 and M=3 have been fixed for the different microstructures and 
consequently remain out of the required fitting exercise to the experimental tensile 
curves. The term σo has been taken the same than that reported by other authors to 
describe the effect of the Peierls stress and of the elements in solid solution [28]: 

σo= 77+ 80%Mn+ 750%P + 60%Si+ 80%Cu+ 45%Ni+ 60%Cr+ 11%Mo+ 5000(Nss+Css) (16) 

L has been replaced by the ferrite grain size expressed by the mean linear intercept, 
dα and the values of k2 that have been obtained by fitting have been found to depend 
inversely on dα, leading to: 

k2 = 
αd

510−
    (dα in m) (17) 

For pearlite, it is generally accepted that the strain hardening is controlled by the 
dislocation density in ferrite. Dollar et al. [3] have determined experimentally the 
dislocation density in the pearlitic ferrite, as a function of the plastic macrospocic strain, 
Fig. 5. A constant mean free path has also been assumed for the plastic deformation of 
pearlite and consequently, Eq. (11) has been applied. As can be seen in the figure, a 
reasonable agreement can be reached between the predictions of model and the 
experimental dislocation density when a value L = 2 10-6 m and k2 = 7 are substituted 
into Eq. (11). The required value of L that, according to the previous hypothesis, 
represents the dislocation mean free path is about one order of magnitude larger than the 
interlamellar spacing. However, the obtained result seem in agreement with experimental 
results obtained for pearlitic steels [3] suggesting that the strain hardening is independent 
of the interlamellar spacing. 

This value of L has been substituted into the following equation:  

σ =σo+3 μ b λ-1 + fαMμ
L
Mb

2

2

k
k )exp(1 ε−−   (18) 

which is a modification of Eq. (15) in order to predict the tensile curves for pure pearlitic 
steel microstructures. The second term takes into account the contribution of the 
interlamellar spacing, λ, to the yield stress [3]. The factor f adopts a value close of 2 for 
eutectoid compositions and decreases to 1, as the carbon content of the pearlite 
decreases. 
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Fig. 5. Dislocation density in the ferrite, as a function of the true plastic 

strain in pearlitic steel. The points are experimental data from 
Ref. 3. The line corresponds to the predictions from Eq. 11 

For martensite, the above formulation applied for ferrite and for pearlite, using L 
constant can also be applied to describe the experimental curves. However, the value of 
L = 3.8 10-8 m that allows getting a reasonable agreement with the experimental tensile 
curves is one order of magnitude lower than the width of laths to which presumably 
could be associated the dislocation mean free path [29]. This indicates that, for 
martensite, in spite of getting a reasonable agreement in terms of fitting, the hypothesis 
made based on a constant L does not seem to be the most appropriate. Taking into 
account that as quenched martensites contain a high density of transformation 
dislocations, it could be assumed L relates to the dislocation spacing. Accordingly, an 
alternative approach, based on Eq. 14, has been applied [30] together with: 

log(ρo) = 8.9372 + 2
178036093.6880

TT
−  (19) 

and 
k1 = (1.69 10-7 oρ  – 4.52) (20) 

with T = Ms the martensite start temperature. These equations have been determined by 
fitting. The first of them represents the transformation dislocation density in martensite 
and is similar to that previously reported by other authors [31], but leads to a density 
about 45% lower. The same type of formulation also agrees for bainite (with T the 
isothermal transformation temperature) by slightly modifying the transformation 
dislocation density and the coefficients relating k1 to ρo. 

Given that the application of the physically based model is made on the base of 
tensile curves, it is not possible to extract conclusions about the exact mechanism 
controlling the strain hardening. However, according to the described results, Eq. 14 
seems to apply reasonably well to bainite and martensite single component 
microstructures, while Eq. 12 gives reasonable results for ferrite and for pearlite.  

Predictions from nanohardness test: The above formulation has demonstrated to 
produce consistent results for single constituent microstructures. However, when applied 
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to predict the mechanical behaviour of each micro-constituent in a mixed microstructure 
some questions can be addressed about its predictive accuracy. The main discrepancy is 
expected to come from the elements partitioning during the phase transformation leading 
to the production of the microstructure and also from the interactions between the 
phases. Nanohardness can be used [9] as a tool to investigate the accuracy of the 
predictions. In a fine multi-constituent microstructure, small indentation depths need to 
be selected in order to avoid interaction in the measurements coming from the 
neighbourhood. However, it has to be taken into account that size effects strongly affect 
the results at small indentation depths [32]. Nanoindentations carried out at different 
imposed depths on Cu, Al and steels with different compositions and microstructures 
allowed deducing empirical linear relationships relating the obtained values for 
nanohardness to the 0.2% proof stress, σy, and the maximum uniform stress, σu, [32].  

σy = 

h

H
3.01

25.0

+

 (21) 

σu = 

h

H
3.01

34.0

+

 (22) 

with H the nanohardness in MPa and h the indentation depth in μm. These relations are 
applicable for h ≥ 0.25 μm. For smaller indentation depths, the results deviate from this 
relation probably due to some limitations of the theory proposed by Nix and Gao [33] 
that is the base for the above equations. 

The results in Fig. 6 show the variation of nanohardness with the carbon content in 
martensite [9, 34]. Some of the data correspond to martensite in ferrite-martensite (F+M) 
microstructures, while the rest belong to fully as quenched martensitic samples. The 
general expected trend, with hardness increasing with the carbon content, is observed. 
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Fig. 6. Nanohardness as a function of the carbon content in martensite in mixed 

microstructures (estimated) and in pure martensite [9, 34]. The data in 
Ref. [9] were obtained for a 0.25 μm indentation depth 

The nanohardness in ferrite is systematically higher for F+M microstructures than 
in ferrite-pearlite ones. Some intercritical treatments have been performed at a 
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temperature of 730ºC in order to transform pearlite into austenite and revert this last to 
martensite during the subsequent water quenching. The results in Fig. 7, clearly show 
that the ferrite in the ferrite-martensite microstructure is harder by an amount ΔH, than 
that in a ferrite-pearlite microstructure.  Some increase of the carbon in solution in ferrite 
in the quenched material can be one of the factors that contribute to such strengthening, 
but the most important contribution probably comes from the deformation of the ferrite 
in the vicinity of the martensite islands. In fact, the formation of martensite involves an 
increase of volume [35]: 

C
V
VM %045.01+=

α

 (23) 

that is considered as being the responsible of the dislocation density increase in the 
neighbouring ferrite [36, 37]. 
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Fig. 7. Nanohardness in the microstructural constituents for a ferrite-pearlite 

and for pearlite-martensite microstructures [9] 

 
Fig. 8. Shearing in pearlite, produced by the formation of bainite/martensite 

in its neighbourhood [9]. 

In agreement with this, transmission electron microscopy (TEM) observations made 
on ultra-fast quenched samples show that the formation of bainite/martensite at a latter 
stage of the transformation, produces some straining on previous phases formed at 
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higher temperatures [9]. An example of this in shown in Fig. 8. The formation of bainite 
and martensite has produced the shearing of the cementite lamellae of the previously 
formed pearlite. 

PREDICTION OF THE TENSILE CURVES 
FOR MIXED MICROSTRUCTURES 

The model proposed by Weng [20] has been finally applied in order to predict the 
tensile curves for ferrite-pearlite and for ferrite-martensite microstructures [9]. This 
model assumes both phases can undergo plastic flow and applies the Hill´s [15] matrix 
weakening constraint for the case in which the matrix is the softest phase. In the present 
case, the ferrite, which is the softest micro-constituent in the different analysed 
microstructures is matrix and accordingly such approach seems the adequate. The 
schematic representation in Fig. 9 shows the distribution of strain and stress on the soft 
and hard micro-constituents and in the mixed microstructure for a given macroscopic 
strain. The slopes of the straight lines represent the respective secant Young moduli. 
When applying Weng´s model, the three different deformation stages proposed by 
Tomota et al. [19] and mentioned above, need to be considered. 
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Fig. 9. Schematic representation of the secant Young´s modulus method applied to the 

stress-strain curves of the micro-constituents and of the mixed microstructure. 

It can be seen, Fig. 10, that a reasonable agreement is obtained between the 
predictions of the model and the experimental curves for different ferrite-pearlite 
microstructures when the tensile curve for each microconstituent is estimated from the 
physically based model described above. However, for ferrite-martensite 
microstructures, the equation for the ferrite needs to be modified in order to take into 
account the strengthening produced by the martensite formation. An empirical approach 
has been applied, as a first approximation. This considers an effective dislocation mean 
free path in ferrite, Leff, being lower than the grain size [10]: 

Leff = C dα (24) 
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 C Si Mn P N Pearlite in 

F-P (%) 
Martensite in 

F-M (%) 
Steel 1 0.16 0.25 1.50 0.012 0.0084 31 42 
Steel 2 0.29 0.26 1.50 0.011 0.0076 61 76 

Fig. 10. Experimental and predicted curves a) ferrite pearlite and b) ferrite 
martensite. Steel composition and volume fraction of the microstructural 

constituents in ferrite-pearlite and in ferrite-martensite microstructures [9] 
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Fig. 11. Predicted strain and stress ratios for ferrite-martensite 

microstructures, according to Weng´s model 
A reasonable agreement has been obtained taking a value for C of 0.6, but further 

developments are required in order to get a more fundamental formulation to describe 
such effect. Additionally, good agreement is found between the strain partitioning 
predicted from the model and the experimentally measured strain in the different micro-
constituents, Fig. 3. 

The curves in Fig. 11, show the ratio between the strain and stress in ferrite and 
those in martensite, obtained from the model for a given steel and different martensite 
contents. It can be seen that the decrease in martensite leads to higher ratios both in 
strain and in stress due to the strengthening of the martensite, as a consequence of its 
higher carbon content. As a consequence, the plasticity of the martensite progressively 
decreases. 
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CONCLUSIONS 

• It has been demonstrated that it is possible to apply a physically based formulation 
to model the tensile curves of different microstructures produced in steels. The 
parameters involved in such formulation can be related to each particular 
microstructure characteristics. 

• The single constituent model can be applied to predict the mechanical behaviour of 
each constituent in a mixed microstructure. For ferrite-martensite steels the effect 
of the strengthening on the ferrite produced by the formation of the martensite 
needs to be considered.  

• An autoconsistent model has demonstrated to agree well with experiment the 
predicted strain partitioning is well described, which is an additional indication 
supporting the validity of the model. 
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