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Abstract 
A new useful approach, based on the first order shear deformation theory (FSDT) 

is presented for the free vibration analysis of the simply supported composite lattice 
plates (CLP). Unlike the previous theory, the in-plane normal and shear stresses are 
considered. The governing equations and the boundary conditions are derived by 
Hamilton’s principle. The closed form solution was carried out using the Navier method 
in order to solve eigenvalues. The effects of non-dimensional natural frequency with 
respect to the various parameters of composite lattice plates are shown in this paper. 
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Introduction 
Nowadays, composite lattice structures have low weight and high special 

strength, and have found applications in aerospace industries. Composite lattice plates 
(CLP) play a big role in aerospace industries in fuselage, airplane wing, helicopter blade 
trail and launch vehicle applications. This has resulted in an extensive research work in 
the field of lattice structures [1-8]. Among many researches of lattice structures, 
Vasiliev et al.  [9-11] have presented an integrated design, manufacturing and testing 
process for high performance lattice structures made by continuous filament and wet 
winding processes from carbon and armed epoxy composites which used as structural 
elements of airplane frames and space launch vehicles. In their papers, lattice structures 
with regular and dense system of ribs are simulated by continuum models, in order to 
obtain their stiffness matrix. Composite lattice plates are widely used in engineering 
fields. These structures are subjected to external dynamic loads which can cause the 
undesirable resonance causing fatigue. Thus, the provocation of each natural frequency 
should be prevented in the structures as much as possible. Therefore, knowing the 
natural frequency values and the vibration mode types of the structures seems to be 
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necessary. Chen and Tsai research gave an analytical model for modal analysis of 
composite lattice plates [12]. This model, so called ESM (Equivalent Stiffness Model), 
allows the modal analysis using stiffness matrix of lattice plate. However there are a 
few published papers about free vibration analysis of composite lattice plates. 
Comprehensive review about vibration analysis of lattice plates and shells are presented 
by G. I. Pshenichnov [13]. The classical and the first-order shear deformation theories 
are among the most useful theories for composite lattice structures analysis [14-16]. The 
classical theory does not afford enough accuracy for analysis of thick plate, because of 
ignoring the transverse shear deformations and overestimating natural frequencies. 
Therefore, calculating the effect of transverse shear deformations in order to investigate 
the thick plate seems to be necessary. Calculation accuracy mostly depends on shear 
correction coefficient in first-order shear theory [17, 18]. Considering the pattern of 
lattice structures, the first order theory is needed for accurate calculation of natural 
frequencies of the lattice plate. 

In this paper, the free vibration analysis of simply supported composite lattice 
plate based on first-order shear deformation theory (FSDT) is presented. The in-plane 
normal and shear stresses are considered. 

 

Governing equations and analytical solving method 
The studied composite lattice plate in this paper is rectangular. A composite 

lattice plate with its variables is represented in Fig. 1.  

 
Fig 1. Geometrical parameters of a composite lattice plate 

 
These variables include: 
H  = Height of cross-section of ribs (thickness of lattice plane) 

hb  = Thickness of cross-section of helical ribs 
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cb  = Thickness of cross-section of horizontal rib 

ha  = Distance between helical ribs 

ca  = Distance between horizontal ribs 
ϕ = Angle of helical ribs with axis (x) 
 
Movement equations and boundary conditions are achieved by Hamilton’s 

principle. 
2

1
( ) 0

t

t
U V T dtδ + − =∫  (1) 
Where U, V and T are the potential energy, the kinetic energy and the external 

forces derived energy, respectively. δ is the operator of the first variation. t2-t1 is the 
time interval. The variation equation of potential energy is presented in the following. In 
the Eq. (2), σii is normal stresses in x and y directions. τiz and γiz (i=x or y) are normal 
shear stresses and strains, respectively. V is the volume of the lattice plate.  

In this analysis the terms of in-plane energy variations are regarded in Eq. (2). 
Those terms of in-plane energy changes which are not considered in previous study are 
regarded in Eq. (2) too. 
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The first-order shear theory is used for the lattice plate considering small 
displacements and rotations. 
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Equations of equilibrium in terms of displacement requires calculation stiffness 
matrix of lattice structure. Hence it is necessary to calculate [A], [B] and [D] matrixes 
components in terms of lattice plate geometric parameter. According to the equations 
for the [A], [B] and [D] matrixes of orthotropic panel, one of the newest and most 
simple way to achieve [A], [B] and [D] matrixes of lattice plate, is the use of [Q] matrix. 

According to geometrical variable of lattice plates, constants of ([Q]lattice)xy matrix 
are: 

4 2 2
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2 2

2 2 0

2 0
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This matrix is the stiffness matrix of a lattice plate in (x) and (y) general 
coordination as shown in Fig. 1. This matrix is similar with the matrix which is obtained 
by Tsai [12] and Vasiliev [9-10] (it is noteworthy that in Tsai's research, the obtained 
matrix is computed considering the vertical ribs which is not used in the present study). 

[A], [B] and [D] matrices for lattice plates, are now computable by equations 
used for calculation of these matrices. Stiffness matrix of a lattice plate is presented as 
below: 
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With achieved relations for [A], [B] and [D] matrices the relation of force and 
applied moments with strains and curvatures of lattice plates can be obtained. 

Using Eqs. (1-8), the first variation of the kinetic energy and the variation of the 
external forces according to the reference [19] and also performing mathematical 
operations, gives the system of governing equations of motion which is expressed as 
follows: 
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Equations system consists of 5 equations and 5 unidentified coefficients which is 

the minimum number of independent equations and is applicable for all conditions, 
especially for various boundary conditions. The 5 dependent unidentified coefficients 
are: 

{ }0 0 0, , , ,x yu v wψ ψ
 (14) 

It is shown that the differential equations of free vibrations of a lattice plate 
versus in-plane, transverse displacements and rotations functions can be transformed to 
a standard problem of Eigen values by the use of Navier method. This method reduces 
the equations of a composite lattice plate with simply supported boundary conditions to 
the following Eigen value equation: 

( ){ } { }2
0[ ] [ ] 0K M Xω ∗− =

 (15) 
In Eq. (15), [K] and [M] are the stiffness and mass matrices, respectively. The 

terms of each [K] and [M] matrices are shown as below: 
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(3,5) (4,4) nK A β=
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in Eq. (12), /m m aα π=  and /n n bβ π= . 
 

Numerical Results and Discussion 
In this section an example of lattice plate is investigated. The achieved results of 

solving the problem with the use of the present theory are compared to the results of the 
classical plate theory (CPT) and finite element method (FEM). 

 

Numerical Verification 
Using the present method, numerical results are obtained for the three considered 

model of composite lattice plate with geometric and mechanical parameters given in 
Tables 1 and 2. 

 
Table 1 The geometric parameters of the lattice plate [m] 

Example H  ϕ    h cb b b= =  ha  /(2sin )c ha a ϕ=  
1 0.02 45° 0.01 0.0707 0.05 
2 0.05 45° 0.01 0.0707 0.05 

 
Table 2 Mechanical properties of the lattice plate (Material Glass/Epoxy) 

Longitudinal modulus Transverse modulus Shear modulus Poisson’s ratio 

( )1  ribE E GPa=  ( )2 E GPa  ( )12 G GPa  12ν  
60 13 3.4 0.3 

 
The obtained results are compared to the solution of the same problem when the 

considered structures are modeled with a finite element analysis package ANSYS. The 
one of mesh generated using this package is shown in Fig. 2. 
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Fig. 2 The mesh generated using ANSYS package for the composite lattice plate 

(Example 2) 
 
As presented in Table 3, assuming a higher freedom degree in present method 

and therefore reducing plate stiffness compared to CPT, achieved results of the present 
method generally show a smaller value compared to CPT. Also, the discrepancies in the 
results obtained for the present method and FEM are given in Table 3. The observed 
maximum discrepancy in the present method and FEM results is in the range of 0.002-
8.314%. Therefore, the present method is in good agreement with the FEM results 
compared with CPT results. In addition, the present method is capable of calculating in-
plane modes.  

 
Table 3 Compression of values of the natural frequency for considered lattice plates 

H Mode FEM CPT Present Discrepancy 
with CPT (%) 

Discrepancy 
with FEM (%) 

1 95.366 95.382 94.468 0.958 0.942 
2 190.73 191.895 189.005 1.506 0.904 
3 265.10 269.201 261.013 3.041 1.542 
4 335.52 341.526 334.118 2.169 0.418 

0.02 

5 370.57 381.529 367.570 3.659 0.810 
1 225.71 238.456 225.265 5.532 0.197 
2 425.48 479.737 440.073 8.268 3.430 
3 591.83 673.002 570.295 15.261 3.639 
4 700.19 853.816 758.402 11.175 8.314 

0.05 

5 786.36 953.823 786.343 17.559 0.002 
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Parametric Study 
In this section, the parametric study of example 1 is presented. First and second 

mode shapes of vertical displacement (W) is shown in Fig. 3. 
The effect of variation of (h/a) on the lattice plate natural frequencies is shown in 

Fig. 4.  

 
Fig. 3 The three-dimensional view to first and second mode shapes of vertical 

displacement (W) respectively: (a) and (b), in the composite lattice plate 
 
As can be seen in Fig. 4 increasing the ratio of thickness to length of lattice plate 

(h/a), the stiffness of structure is increased and thus the value of lattice plate frequency 
will increase. Fig. 4b shows, when the thicknesses to length ratio are higher than 10%, 
the discrepancy between the result from the classical method and that obtained from the 
present method is increased. This point indicates weakness of the classical method in 
calculating natural frequency of thick lattice plate. The effect of variation (bc/ac) on the 
first three frequencies of structure is shown in Fig. 5. Regarding to this figure, it is 
obvious that by decreasing rib width and increasing horizontal rib distance, the natural 
frequency of the lattice plate decreases. 
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Fig. 4a Variation of natural frequencies 
versus (h/a) in the composite lattice plate 

(a) first three natural frequencies 

 
Fig. 4b Variation of natural frequencies 
versus (h/a) in the composite lattice plate 

(b) discrepancy between CPT and the 
present method 

 
According to Fig. 5b, by increasing the ratio (bc/ac), discrepancy between the 

result obtained applying classical method and the present method is increased. 

 
Fig. 5a Variation of natural frequencies 

versus (bc/ac) in the composite lattice plate 
(a) first three natural frequencies 

 
Fig. 5b Variation of natural frequencies 

versus (bc/ac) in the composite lattice plate 
(b) discrepancy between CPT and the 

present method 
 
The effect of variation (bh/ah) on the first three frequencies of structure is shown 

in Fig. 6a. The results of this figure show that by decreasing the width and increasing 
helical rib distance the natural frequency of the lattice plate is increased. According to 
Fig. 6b by increasing the ratio (bh/ah), discrepancy between the resulted obtained from 
the classical method and the present method is increased. 
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Fig. 6a Variation of natural frequencies 

versus (bh/ah) in the composite lattice 
plate (a) first three natural frequencies 

 
Fig. 6b Variation of natural frequencies 

versus (bh/ah) in the composite lattice 
plate (b) discrepancy between CPT and 

the present method 
 
The variation of the first three natural frequencies of the lattice plate according to 

the helical Rib’s angle is shown in Fig. 7.  

 
Fig. 7 Variation of natural frequencies versus φ in the composite lattice plate 
This figure shows that by increasing φ the natural frequency of lattice plate are 

decreased. This phenomenon indicates that the lattice plate pattern is changed to 
orthogrid, so the natural frequency of the lattice plate is decreased. This means that the 
values of natural frequencies of orthogrid lattice plate are less than other lattice plate 
patterns.  
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Conclusion 
Free vibration of lattice plates is investigated by using the new formulation. The 

applied degrees of freedom in the present method are higher than the classical theory, so 
its stiffness is lower than classical theory and the achieved natural frequencies are closer 
to FEM values. According to achieved results, it can be seen that thick lattice plate 
dynamic response significantly depends on the assumption of considering the in-plane 
stresses in the plate. Difference between the results of the present theory and the 
classical theory shows this point. For example, natural frequency values and also 
displacement of the lattice plate are affected by this point. Thus, if not considered in 
calculations, the in-plane stresses cause the increase of the discrepancy between the 
classical and first order results. 
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